{"id":"https://openalex.org/W2035076844","doi":"https://doi.org/10.1109/wi-iat.2014.96","title":"Recursive Deep Learning for Sentiment Analysis over Social Data","display_name":"Recursive Deep Learning for Sentiment Analysis over Social Data","publication_year":2014,"publication_date":"2014-08-01","ids":{"openalex":"https://openalex.org/W2035076844","doi":"https://doi.org/10.1109/wi-iat.2014.96","mag":"2035076844"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/wi-iat.2014.96","pdf_url":null,"source":{"id":"https://openalex.org/S4363606669","display_name":"2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101857422","display_name":"Changliang Li","orcid":"https://orcid.org/0000-0003-2236-9266"},"institutions":[{"id":"https://openalex.org/I4210094879","display_name":"Shandong Institute of Automation","ror":"https://ror.org/00qdtba35","country_code":"CN","type":"facility","lineage":["https://openalex.org/I4210094879","https://openalex.org/I4210142748"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Changliang Li","raw_affiliation_strings":["Inst. of Autom., Beijing, China"],"affiliations":[{"raw_affiliation_string":"Inst. of Autom., Beijing, China","institution_ids":["https://openalex.org/I4210094879"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5062895972","display_name":"Bo Xu","orcid":"https://orcid.org/0000-0001-5453-978X"},"institutions":[{"id":"https://openalex.org/I4210094879","display_name":"Shandong Institute of Automation","ror":"https://ror.org/00qdtba35","country_code":"CN","type":"facility","lineage":["https://openalex.org/I4210094879","https://openalex.org/I4210142748"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Bo Xu","raw_affiliation_strings":["Inst. of Autom., Beijing, China"],"affiliations":[{"raw_affiliation_string":"Inst. of Autom., Beijing, China","institution_ids":["https://openalex.org/I4210094879"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5103637441","display_name":"Gaowei Wu","orcid":"https://orcid.org/0000-0003-2104-972X"},"institutions":[{"id":"https://openalex.org/I4210094879","display_name":"Shandong Institute of Automation","ror":"https://ror.org/00qdtba35","country_code":"CN","type":"facility","lineage":["https://openalex.org/I4210094879","https://openalex.org/I4210142748"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Gaowei Wu","raw_affiliation_strings":["Inst. of Autom., Beijing, China"],"affiliations":[{"raw_affiliation_string":"Inst. of Autom., Beijing, China","institution_ids":["https://openalex.org/I4210094879"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5064449445","display_name":"Saike He","orcid":"https://orcid.org/0000-0002-2186-4524"},"institutions":[{"id":"https://openalex.org/I4210094879","display_name":"Shandong Institute of Automation","ror":"https://ror.org/00qdtba35","country_code":"CN","type":"facility","lineage":["https://openalex.org/I4210094879","https://openalex.org/I4210142748"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Saike He","raw_affiliation_strings":["Inst. of Autom., Beijing, China"],"affiliations":[{"raw_affiliation_string":"Inst. of Autom., Beijing, China","institution_ids":["https://openalex.org/I4210094879"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5084860614","display_name":"Guanhua Tian","orcid":null},"institutions":[{"id":"https://openalex.org/I4210094879","display_name":"Shandong Institute of Automation","ror":"https://ror.org/00qdtba35","country_code":"CN","type":"facility","lineage":["https://openalex.org/I4210094879","https://openalex.org/I4210142748"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Guanhua Tian","raw_affiliation_strings":["Inst. of Autom., Beijing, China"],"affiliations":[{"raw_affiliation_string":"Inst. of Autom., Beijing, China","institution_ids":["https://openalex.org/I4210094879"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5055393039","display_name":"Hongwei Hao","orcid":"https://orcid.org/0000-0003-2019-516X"},"institutions":[{"id":"https://openalex.org/I4210094879","display_name":"Shandong Institute of Automation","ror":"https://ror.org/00qdtba35","country_code":"CN","type":"facility","lineage":["https://openalex.org/I4210094879","https://openalex.org/I4210142748"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Hongwei Hao","raw_affiliation_strings":["Inst. of Autom., Beijing, China"],"affiliations":[{"raw_affiliation_string":"Inst. of Autom., Beijing, China","institution_ids":["https://openalex.org/I4210094879"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.875,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":46,"citation_normalized_percentile":{"value":0.9486,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":null,"issue":null,"first_page":"180","last_page":"185"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10664","display_name":"Sentiment Analysis and Opinion Mining","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10664","display_name":"Sentiment Analysis and Opinion Mining","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9973,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13083","display_name":"Advanced Text Analysis Techniques","score":0.9962,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/sentiment-analysis","display_name":"Sentiment Analysis","score":0.84439087},{"id":"https://openalex.org/keywords/treebank","display_name":"Treebank","score":0.797261},{"id":"https://openalex.org/keywords/margin","display_name":"Margin (machine learning)","score":0.73689145}],"concepts":[{"id":"https://openalex.org/C66402592","wikidata":"https://www.wikidata.org/wiki/Q2271421","display_name":"Sentiment analysis","level":2,"score":0.84439087},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.79916286},{"id":"https://openalex.org/C206134035","wikidata":"https://www.wikidata.org/wiki/Q811525","display_name":"Treebank","level":3,"score":0.797261},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.77569425},{"id":"https://openalex.org/C774472","wikidata":"https://www.wikidata.org/wiki/Q6760393","display_name":"Margin (machine learning)","level":2,"score":0.73689145},{"id":"https://openalex.org/C2777530160","wikidata":"https://www.wikidata.org/wiki/Q41796","display_name":"Sentence","level":2,"score":0.65248513},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.591331},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.5849145},{"id":"https://openalex.org/C9679016","wikidata":"https://www.wikidata.org/wiki/Q1417473","display_name":"Principle of maximum entropy","level":2,"score":0.5186659},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.5159758},{"id":"https://openalex.org/C52001869","wikidata":"https://www.wikidata.org/wiki/Q812530","display_name":"Naive Bayes classifier","level":3,"score":0.50625175},{"id":"https://openalex.org/C9652623","wikidata":"https://www.wikidata.org/wiki/Q190109","display_name":"Field (mathematics)","level":2,"score":0.43269932},{"id":"https://openalex.org/C518677369","wikidata":"https://www.wikidata.org/wiki/Q202833","display_name":"Social media","level":2,"score":0.41724646},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.39389628},{"id":"https://openalex.org/C2776321320","wikidata":"https://www.wikidata.org/wiki/Q857525","display_name":"Annotation","level":2,"score":0.16902274},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.07809937},{"id":"https://openalex.org/C136764020","wikidata":"https://www.wikidata.org/wiki/Q466","display_name":"World Wide Web","level":1,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/wi-iat.2014.96","pdf_url":null,"source":{"id":"https://openalex.org/S4363606669","display_name":"2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/4","display_name":"Quality education","score":0.66}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":23,"referenced_works":["https://openalex.org/W104703790","https://openalex.org/W1614298861","https://openalex.org/W1889268436","https://openalex.org/W1984052055","https://openalex.org/W2096110600","https://openalex.org/W2096707493","https://openalex.org/W2097606805","https://openalex.org/W2108420397","https://openalex.org/W2108646579","https://openalex.org/W2114524997","https://openalex.org/W2126581182","https://openalex.org/W2129294185","https://openalex.org/W2131462252","https://openalex.org/W2132166724","https://openalex.org/W2146502635","https://openalex.org/W2158139315","https://openalex.org/W2160052288","https://openalex.org/W2163302275","https://openalex.org/W2164019165","https://openalex.org/W2251939518","https://openalex.org/W2949998441","https://openalex.org/W3146306708","https://openalex.org/W98255950"],"related_works":["https://openalex.org/W589103562","https://openalex.org/W3142119062","https://openalex.org/W3021501837","https://openalex.org/W2740662036","https://openalex.org/W2251234095","https://openalex.org/W2250768577","https://openalex.org/W2250721770","https://openalex.org/W1991220724","https://openalex.org/W159209093","https://openalex.org/W131522978"],"abstract_inverted_index":{"Sentiment":[0,49],"analysis":[1,23],"has":[2],"now":[3],"become":[4],"a":[5,47,67,95,124],"popular":[6],"research":[7],"problem":[8,86],"to":[9,31,74],"tackle":[10],"in":[11],"NLP":[12],"field.":[13],"However,":[14],"there":[15],"are":[16,60],"very":[17],"few":[18],"researches":[19],"conducted":[20],"on":[21,79],"sentiment":[22,76,103],"for":[24],"Chinese.":[25],"Progress":[26],"is":[27,97],"held":[28],"back":[29],"due":[30],"lack":[32],"of":[33,87],"large":[34,125],"and":[35,38,121],"labelled":[36],"corpus":[37],"powerful":[39],"models.":[40],"To":[41],"remedy":[42],"this":[43],"deficiency,":[44],"we":[45,65],"build":[46],"Chinese":[48],"Treebank":[50],"over":[51],"social":[52],"data.":[53],"It":[54],"concludes":[55],"13550":[56],"labeled":[57],"sentences":[58],"which":[59],"from":[61],"movie":[62],"reviews.":[63],"Furthermore,":[64],"introduce":[66],"novel":[68],"Recursive":[69],"Neural":[70],"Deep":[71],"Model":[72],"(RNDM)":[73],"predict":[75],"label":[77,104],"based":[78],"recursive":[80],"deep":[81],"learning.":[82],"We":[83],"consider":[84],"the":[85],"classifying":[88],"one":[89],"sentence":[90,106],"by":[91,123],"overall":[92],"sentiment,":[93],"determining":[94],"review":[96],"positive":[98],"or":[99],"negative.":[100],"On":[101],"predicting":[102],"at":[105],"level,":[107],"our":[108],"model":[109],"outperforms":[110],"other":[111],"commonly":[112],"used":[113],"baselines,":[114],"such":[115],"as":[116],"Na\u00efve":[117],"Bayes,":[118],"Maximum":[119],"Entropy":[120],"SVM,":[122],"margin.":[126]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2035076844","counts_by_year":[{"year":2024,"cited_by_count":4},{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":10},{"year":2020,"cited_by_count":5},{"year":2019,"cited_by_count":10},{"year":2018,"cited_by_count":6},{"year":2017,"cited_by_count":3},{"year":2016,"cited_by_count":2},{"year":2015,"cited_by_count":1}],"updated_date":"2025-01-04T01:43:02.795915","created_date":"2016-06-24"}