{"id":"https://openalex.org/W3145102994","doi":"https://doi.org/10.1109/wh.2016.7764570","title":"Parsing wireless electrocardiogram signals with context free grammar conditional random fields","display_name":"Parsing wireless electrocardiogram signals with context free grammar conditional random fields","publication_year":2016,"publication_date":"2016-10-01","ids":{"openalex":"https://openalex.org/W3145102994","doi":"https://doi.org/10.1109/wh.2016.7764570","mag":"3145102994"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/wh.2016.7764570","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100555161","display_name":"Nguyen","orcid":null},"institutions":[{"id":"https://openalex.org/I24603500","display_name":"University of Massachusetts Amherst","ror":"https://ror.org/0072zz521","country_code":"US","type":"funder","lineage":["https://openalex.org/I24603500"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"None Nguyen","raw_affiliation_strings":["University of Massachusetts Amherst"],"affiliations":[{"raw_affiliation_string":"University of Massachusetts Amherst","institution_ids":["https://openalex.org/I24603500"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5112166430","display_name":"Adams","orcid":null},"institutions":[{"id":"https://openalex.org/I24603500","display_name":"University of Massachusetts Amherst","ror":"https://ror.org/0072zz521","country_code":"US","type":"funder","lineage":["https://openalex.org/I24603500"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"None Adams","raw_affiliation_strings":["University of Massachusetts Amherst"],"affiliations":[{"raw_affiliation_string":"University of Massachusetts Amherst","institution_ids":["https://openalex.org/I24603500"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5113939225","display_name":"Natarajan","orcid":null},"institutions":[{"id":"https://openalex.org/I24603500","display_name":"University of Massachusetts Amherst","ror":"https://ror.org/0072zz521","country_code":"US","type":"funder","lineage":["https://openalex.org/I24603500"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"None Natarajan","raw_affiliation_strings":["University of Massachusetts Amherst"],"affiliations":[{"raw_affiliation_string":"University of Massachusetts Amherst","institution_ids":["https://openalex.org/I24603500"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5023142437","display_name":"Benjamin M. Marlin","orcid":"https://orcid.org/0000-0002-2626-3410"},"institutions":[{"id":"https://openalex.org/I24603500","display_name":"University of Massachusetts Amherst","ror":"https://ror.org/0072zz521","country_code":"US","type":"funder","lineage":["https://openalex.org/I24603500"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"None Marlin","raw_affiliation_strings":["University of Massachusetts Amherst"],"affiliations":[{"raw_affiliation_string":"University of Massachusetts Amherst","institution_ids":["https://openalex.org/I24603500"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.697,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":3,"citation_normalized_percentile":{"value":0.403026,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":77,"max":79},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"8"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11021","display_name":"ECG Monitoring and Analysis","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2705","display_name":"Cardiology and Cardiovascular Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T11021","display_name":"ECG Monitoring and Analysis","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2705","display_name":"Cardiology and Cardiovascular Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10429","display_name":"EEG and Brain-Computer Interfaces","score":0.9897,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation Techniques","score":0.9834,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.75562453},{"id":"https://openalex.org/C186644900","wikidata":"https://www.wikidata.org/wiki/Q194152","display_name":"Parsing","level":2,"score":0.6338995},{"id":"https://openalex.org/C152565575","wikidata":"https://www.wikidata.org/wiki/Q1124538","display_name":"Conditional random field","level":2,"score":0.6273392},{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.55020237},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.49613103},{"id":"https://openalex.org/C26022165","wikidata":"https://www.wikidata.org/wiki/Q8091","display_name":"Grammar","level":2,"score":0.4234287},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.40977588},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.40115365},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.108665586},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.06161779},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C166957645","wikidata":"https://www.wikidata.org/wiki/Q23498","display_name":"Archaeology","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/wh.2016.7764570","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/4","score":0.72,"display_name":"Quality education"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":27,"referenced_works":["https://openalex.org/W1511986666","https://openalex.org/W1767708321","https://openalex.org/W181529752","https://openalex.org/W1985006367","https://openalex.org/W2002144308","https://openalex.org/W2005735568","https://openalex.org/W2034160908","https://openalex.org/W2042558618","https://openalex.org/W2059912118","https://openalex.org/W2065073464","https://openalex.org/W2071312623","https://openalex.org/W2081189996","https://openalex.org/W2085930997","https://openalex.org/W2094219273","https://openalex.org/W2104228499","https://openalex.org/W2105842272","https://openalex.org/W2127510558","https://openalex.org/W2134275125","https://openalex.org/W2135874502","https://openalex.org/W2145433315","https://openalex.org/W2147880316","https://openalex.org/W2148217011","https://openalex.org/W2162273778","https://openalex.org/W2797302139","https://openalex.org/W4236035547","https://openalex.org/W4245826738","https://openalex.org/W4252600032"],"related_works":["https://openalex.org/W6643695","https://openalex.org/W50079190","https://openalex.org/W4381248170","https://openalex.org/W3189621521","https://openalex.org/W2886890203","https://openalex.org/W2356597680","https://openalex.org/W2173794830","https://openalex.org/W2093471820","https://openalex.org/W2078793151","https://openalex.org/W2045514505"],"abstract_inverted_index":{"Recent":[0],"advances":[1],"in":[2,29,94,110],"wearable":[3],"sensor":[4],"technology":[5],"have":[6,87],"made":[7],"it":[8,105],"possible":[9],"to":[10,74,91],"simultaneously":[11],"collect":[12],"multiple":[13],"streams":[14,41],"of":[15,57,60,121],"physiological":[16],"and":[17,118,136],"context":[18,82,128],"data":[19,40,45,61],"from":[20,37,62],"individuals":[21],"as":[22,115],"they":[23],"go":[24],"about":[25],"their":[26],"daily":[27],"activities":[28],"natural":[30,95],"environments.":[31],"However,":[32],"extracting":[33],"reliable":[34],"higher-level":[35,111],"inferences":[36],"these":[38],"raw":[39],"remains":[42],"a":[43,69,107,126],"key":[44,108],"analysis":[46,59],"challenge.":[47],"In":[48],"this":[49],"paper,":[50],"we":[51],"focus":[52,99],"on":[53,100,141],"the":[54,58,119,142],"specific":[55],"case":[56],"wireless":[63],"electrocardiogram":[64],"(ECG)":[65],"sensors.":[66],"We":[67,98,124],"present":[68],"new":[70],"robust":[71,127],"probabilistic":[72],"approach":[73],"ECG":[75,101,134,143],"morphology":[76,102],"extraction":[77,103],"using":[78],"conditional":[79],"random":[80],"field":[81],"free":[83,129],"grammar":[84,130],"models,":[85],"which":[86],"traditionally":[88],"been":[89],"applied":[90],"parsing":[92,132],"problems":[93],"language":[96],"processing.":[97],"because":[104],"is":[106],"step":[109],"detection":[112,117,120],"tasks":[113],"such":[114],"arrhythmia":[116],"drug":[122],"use.":[123],"introduce":[125],"for":[131],"noisy":[133],"data,":[135],"show":[137],"significantly":[138],"improved":[139],"performance":[140],"morphological":[144],"labeling":[145],"task.":[146]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3145102994","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2018,"cited_by_count":2}],"updated_date":"2025-03-21T15:55:05.289099","created_date":"2021-04-13"}