{"id":"https://openalex.org/W2772441256","doi":"https://doi.org/10.1109/wcsp.2017.8170894","title":"Robust watermarking based on spread transform","display_name":"Robust watermarking based on spread transform","publication_year":2017,"publication_date":"2017-10-01","ids":{"openalex":"https://openalex.org/W2772441256","doi":"https://doi.org/10.1109/wcsp.2017.8170894","mag":"2772441256"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/wcsp.2017.8170894","pdf_url":null,"source":{"id":"https://openalex.org/S4363607893","display_name":"2021 13th International Conference on Wireless Communications and Signal Processing (WCSP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100444776","display_name":"Yingying Li","orcid":"https://orcid.org/0000-0002-3999-2647"},"institutions":[{"id":"https://openalex.org/I76569877","display_name":"Southeast University","ror":"https://ror.org/04ct4d772","country_code":"CN","type":"education","lineage":["https://openalex.org/I76569877"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yingying Li","raw_affiliation_strings":["School of Information Science and Engineering, Southeast University, Nanjing, P.R. China"],"affiliations":[{"raw_affiliation_string":"School of Information Science and Engineering, Southeast University, Nanjing, P.R. China","institution_ids":["https://openalex.org/I76569877"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100347986","display_name":"Yifeng Zhang","orcid":"https://orcid.org/0000-0003-1205-9475"},"institutions":[{"id":"https://openalex.org/I4210130954","display_name":"China Institute Of Communications","ror":"https://ror.org/0395ve714","country_code":"CN","type":"other","lineage":["https://openalex.org/I4210130954"]},{"id":"https://openalex.org/I881766915","display_name":"Nanjing University","ror":"https://ror.org/01rxvg760","country_code":"CN","type":"education","lineage":["https://openalex.org/I881766915"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yifeng Zhang","raw_affiliation_strings":["Nanjing Institutes of Communications Technologies, Nanjing University, Nanjing, P.R. China"],"affiliations":[{"raw_affiliation_string":"Nanjing Institutes of Communications Technologies, Nanjing University, Nanjing, P.R. China","institution_ids":["https://openalex.org/I4210130954","https://openalex.org/I881766915"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":63},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"6"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10388","display_name":"Advanced Steganography and Watermarking Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10388","display_name":"Advanced Steganography and Watermarking Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11017","display_name":"Chaos-based Image/Signal Encryption","score":0.9856,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11439","display_name":"Video Analysis and Summarization","score":0.9825,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/scale-invariant-feature-transform","display_name":"Scale-invariant feature transform","score":0.92989767},{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.8579496},{"id":"https://openalex.org/keywords/invisibility","display_name":"Invisibility","score":0.72966105}],"concepts":[{"id":"https://openalex.org/C61265191","wikidata":"https://www.wikidata.org/wiki/Q767770","display_name":"Scale-invariant feature transform","level":3,"score":0.92989767},{"id":"https://openalex.org/C150817343","wikidata":"https://www.wikidata.org/wiki/Q875932","display_name":"Digital watermarking","level":3,"score":0.8609841},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.8579496},{"id":"https://openalex.org/C50962388","wikidata":"https://www.wikidata.org/wiki/Q762018","display_name":"Invisibility","level":2,"score":0.72966105},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6598169},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.59399414},{"id":"https://openalex.org/C164112704","wikidata":"https://www.wikidata.org/wiki/Q7974348","display_name":"Watermark","level":3,"score":0.5689002},{"id":"https://openalex.org/C99844830","wikidata":"https://www.wikidata.org/wiki/Q102441924","display_name":"Scaling","level":2,"score":0.48203456},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.45828384},{"id":"https://openalex.org/C179799912","wikidata":"https://www.wikidata.org/wiki/Q205084","display_name":"Computational complexity theory","level":2,"score":0.43881032},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.35062915},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3452275},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.20126078},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.19395},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/wcsp.2017.8170894","pdf_url":null,"source":{"id":"https://openalex.org/S4363607893","display_name":"2021 13th International Conference on Wireless Communications and Signal Processing (WCSP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":16,"referenced_works":["https://openalex.org/W2025041664","https://openalex.org/W2025144259","https://openalex.org/W2027584002","https://openalex.org/W2049099859","https://openalex.org/W2084112876","https://openalex.org/W2101199037","https://openalex.org/W2107465879","https://openalex.org/W2116467012","https://openalex.org/W2127962607","https://openalex.org/W2151103935","https://openalex.org/W2158518777","https://openalex.org/W2170761645","https://openalex.org/W2337919308","https://openalex.org/W2411803951","https://openalex.org/W2526903438","https://openalex.org/W2575115042"],"related_works":["https://openalex.org/W2385289568","https://openalex.org/W2381486749","https://openalex.org/W2358993821","https://openalex.org/W2137394636","https://openalex.org/W2098152888","https://openalex.org/W2080353903","https://openalex.org/W2040356834","https://openalex.org/W1559740347","https://openalex.org/W1516446231","https://openalex.org/W1514507288"],"abstract_inverted_index":{"Invisibility":[0],"and":[1,23,62,124,137],"robustness":[2,145,166],"are":[3],"two":[4],"important":[5],"performance":[6,14,92],"indicators":[7],"of":[8,15,51,69,93,132,167],"watermarking":[9,16,94,139],"algorithm.":[10],"To":[11],"improve":[12,90,143],"the":[13,18,24,28,32,52,66,91,101,121,133,138,154,165],"algorithms,":[17],"visual":[19],"model":[20,35,54,71],"is":[21,27,36,87],"introduced,":[22],"most":[25],"classic":[26],"Watson":[29,34,53],"model.":[30],"However,":[31],"original":[33,70],"defective":[37],"in":[38],"resisting":[39,97,168],"amplitude":[40,60],"scaling.":[41],"In":[42],"this":[43],"paper,":[44],"we":[45,109],"will":[46,110],"propose":[47,111],"a":[48],"new":[49],"improvement":[50],"to":[55,64,89,119],"overcome":[56],"its":[57],"shortcomings":[58],"on":[59,81,96],"scaling":[61],"not":[63,157],"change":[65],"contrast":[67],"values":[68],"as":[72,74],"much":[73],"possible.":[75],"Then":[76],"feature":[77,83],"points":[78],"matching":[79],"based":[80],"scale-invariant":[82],"transform":[84],"(SIFT)":[85],"algorithm":[86,95,104,115,136,140],"introduced":[88],"geometric":[98,147],"attacks.":[99,148,170],"While":[100],"traditional":[102],"SIFT":[103,114,135],"has":[105],"high":[106,127],"computational":[107,122],"complexity,":[108],"an":[112],"improved":[113,134],"different":[116],"from":[117],"used":[118],"reduce":[120],"time":[123],"still":[125],"keep":[126,159],"correction":[128],"accuracy.":[129],"The":[130,149],"combination":[131],"can":[141],"greatly":[142],"watermark's":[144],"against":[146],"experimental":[150],"results":[151],"show":[152],"that":[153],"proposed":[155],"algorithms":[156],"only":[158],"better":[160],"invisibility,":[161],"but":[162],"also":[163],"optimize":[164],"various":[169]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2772441256","counts_by_year":[],"updated_date":"2024-12-09T05:47:37.570846","created_date":"2017-12-22"}