{"id":"https://openalex.org/W4320009885","doi":"https://doi.org/10.1109/wacvw58289.2023.00006","title":"Exploiting Inter-pixel Correlations in Unsupervised Domain Adaptation for Semantic Segmentation","display_name":"Exploiting Inter-pixel Correlations in Unsupervised Domain Adaptation for Semantic Segmentation","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4320009885","doi":"https://doi.org/10.1109/wacvw58289.2023.00006"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/wacvw58289.2023.00006","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2110.10916","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5001948765","display_name":"Inseop Chung","orcid":"https://orcid.org/0000-0002-7701-6639"},"institutions":[{"id":"https://openalex.org/I139264467","display_name":"Seoul National University","ror":"https://ror.org/04h9pn542","country_code":"KR","type":"education","lineage":["https://openalex.org/I139264467"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Inseop Chung","raw_affiliation_strings":["Seoul National University"],"affiliations":[{"raw_affiliation_string":"Seoul National University","institution_ids":["https://openalex.org/I139264467"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5103134818","display_name":"Jayeon Yoo","orcid":"https://orcid.org/0000-0002-8461-2260"},"institutions":[{"id":"https://openalex.org/I139264467","display_name":"Seoul National University","ror":"https://ror.org/04h9pn542","country_code":"KR","type":"education","lineage":["https://openalex.org/I139264467"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Jayeon Yoo","raw_affiliation_strings":["Seoul National University"],"affiliations":[{"raw_affiliation_string":"Seoul National University","institution_ids":["https://openalex.org/I139264467"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5084897975","display_name":"Nojun Kwak","orcid":"https://orcid.org/0000-0002-1792-0327"},"institutions":[{"id":"https://openalex.org/I139264467","display_name":"Seoul National University","ror":"https://ror.org/04h9pn542","country_code":"KR","type":"education","lineage":["https://openalex.org/I139264467"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Nojun Kwak","raw_affiliation_strings":["Seoul National University"],"affiliations":[{"raw_affiliation_string":"Seoul National University","institution_ids":["https://openalex.org/I139264467"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":69,"max":80},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Advances in Transfer Learning and Domain Adaptation","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Advances in Transfer Learning and Domain Adaptation","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Deep Learning in Computer Vision and Image Recognition","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11775","display_name":"Applications of Deep Learning in Medical Imaging","score":0.9842,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/domain-adaptation","display_name":"Domain Adaptation","score":0.577085},{"id":"https://openalex.org/keywords/semantic-segmentation","display_name":"Semantic Segmentation","score":0.546444},{"id":"https://openalex.org/keywords/unsupervised-learning","display_name":"Unsupervised Learning","score":0.544742},{"id":"https://openalex.org/keywords/semi-supervised-learning","display_name":"Semi-Supervised Learning","score":0.540839},{"id":"https://openalex.org/keywords/transfer-learning","display_name":"Transfer Learning","score":0.53975},{"id":"https://openalex.org/keywords/labeled-data","display_name":"Labeled data","score":0.41840124}],"concepts":[{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.8240539},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.805332},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.79260963},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6399079},{"id":"https://openalex.org/C2776434776","wikidata":"https://www.wikidata.org/wiki/Q19246213","display_name":"Domain adaptation","level":3,"score":0.6014361},{"id":"https://openalex.org/C36503486","wikidata":"https://www.wikidata.org/wiki/Q11235244","display_name":"Domain (mathematical analysis)","level":2,"score":0.5100933},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.50985783},{"id":"https://openalex.org/C2776145971","wikidata":"https://www.wikidata.org/wiki/Q30673951","display_name":"Labeled data","level":2,"score":0.41840124},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.41232818},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.12418395},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/wacvw58289.2023.00006","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2110.10916","pdf_url":"https://arxiv.org/pdf/2110.10916","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2110.10916","pdf_url":"https://arxiv.org/pdf/2110.10916","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320320451","funder_display_name":"Neurosurgical Research Foundation","award_id":"2021R1A2C3006659"}],"datasets":[],"versions":[],"referenced_works_count":40,"referenced_works":["https://openalex.org/W1686810756","https://openalex.org/W1731081199","https://openalex.org/W1903029394","https://openalex.org/W2194775991","https://openalex.org/W2267186426","https://openalex.org/W2295107390","https://openalex.org/W2340897893","https://openalex.org/W2412782625","https://openalex.org/W2413794162","https://openalex.org/W2431874326","https://openalex.org/W2487365028","https://openalex.org/W2884585870","https://openalex.org/W2895281799","https://openalex.org/W2962793481","https://openalex.org/W2963073217","https://openalex.org/W2963091558","https://openalex.org/W2963107255","https://openalex.org/W2972285644","https://openalex.org/W2982410491","https://openalex.org/W2985406498","https://openalex.org/W2985409929","https://openalex.org/W2995394700","https://openalex.org/W3034417116","https://openalex.org/W3034562924","https://openalex.org/W3034930876","https://openalex.org/W3035236545","https://openalex.org/W3035294798","https://openalex.org/W3094277917","https://openalex.org/W3095391551","https://openalex.org/W3096609285","https://openalex.org/W3107502112","https://openalex.org/W3107909383","https://openalex.org/W3108560336","https://openalex.org/W3110486195","https://openalex.org/W3119635706","https://openalex.org/W3120800376","https://openalex.org/W3132441350","https://openalex.org/W3175294391","https://openalex.org/W3180003570","https://openalex.org/W4385245566"],"related_works":["https://openalex.org/W4389474468","https://openalex.org/W4321649381","https://openalex.org/W4300172004","https://openalex.org/W3204418343","https://openalex.org/W3180787869","https://openalex.org/W3035557009","https://openalex.org/W2997645659","https://openalex.org/W2955455867","https://openalex.org/W2955172689","https://openalex.org/W2341113105"],"abstract_inverted_index":{"\u201cSelf-training\u201d":[0],"has":[1],"become":[2],"a":[3,16,55,69,85,102],"dominant":[4],"method":[5,70,172,190],"for":[6,21],"se-mantic":[7],"segmentation":[8,53,95,132],"via":[9,84],"unsupervised":[10],"domain":[11,79,83,117],"adaptation":[12],"(UDA).":[13],"It":[14],"creates":[15,101],"set":[17],"of":[18,57,71,93,153],"pseudo":[19,31,145],"labels":[20,146],"the":[22,30,73,77,81,91,94,115,120,131,135,144,151,154,162,175],"target":[23,82,136],"do-main":[24],"to":[25,80,118,129,191],"give":[26],"explicit":[27],"supervision.":[28],"However,":[29],"la-bels":[32],"are":[33],"noisy,":[34],"sparse":[35],"and":[36,100,182],"do":[37],"not":[38,141],"provide":[39],"any":[40],"information":[41],"about":[42,161],"inter-pixel":[43,47,74,122,163],"correlations.":[44,164],"We":[45],"regard":[46],"cor-relation":[48],"quite":[49],"important":[50],"because":[51],"semantic":[52],"is":[54,111,127],"task":[56],"predicting":[58],"highly":[59],"structured":[60],"pixel-level":[61],"outputs.":[62],"Therefore,":[63],"in":[64],"this":[65],"paper,":[66],"we":[67,168],"propose":[68],"transfer-ring":[72],"correlations":[75],"from":[76,143],"source":[78,116],"self-attention":[86,155],"module.":[87],"The":[88,109,138],"module":[89,110,156],"takes":[90],"prediction":[92,104],"network":[96,133,139],"as":[97],"an":[98],"in-put":[99],"self-attended":[103],"that":[105,170],"correlates":[106],"similar":[107],"pixels.":[108],"trained":[112],"only":[113,142],"on":[114,134,177],"learn":[119],"domain-invariant":[121],"correlations,":[123],"then":[124],"later,":[125],"it":[126],"used":[128],"train":[130],"domain.":[137],"learns":[140],"but":[147],"also":[148,183],"by":[149],"following":[150],"output":[152],"which":[157],"provides":[158],"additional":[159],"knowledge":[160],"Through":[165],"extensive":[166],"ex-periments,":[167],"show":[169],"our":[171],"significantly":[173],"improves":[174],"performance":[176],"two":[178],"standard":[179],"UDA":[180],"benchmarks":[181],"can":[184],"be":[185],"combined":[186],"with":[187],"recent":[188],"state-of-the-art":[189],"achieve":[192],"better":[193],"performance.":[194]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4320009885","counts_by_year":[{"year":2022,"cited_by_count":1}],"updated_date":"2024-11-14T13:52:53.540390","created_date":"2023-02-11"}