{"id":"https://openalex.org/W4213023864","doi":"https://doi.org/10.1109/wacvw54805.2022.00071","title":"More or Less (MoL): Defending against Multiple Perturbation Attacks on Deep Neural Networks through Model Ensemble and Compression","display_name":"More or Less (MoL): Defending against Multiple Perturbation Attacks on Deep Neural Networks through Model Ensemble and Compression","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4213023864","doi":"https://doi.org/10.1109/wacvw54805.2022.00071"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/wacvw54805.2022.00071","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101511712","display_name":"Hao Cheng","orcid":"https://orcid.org/0000-0003-4823-0908"},"institutions":[{"id":"https://openalex.org/I87182695","display_name":"Universidad del Noreste","ror":"https://ror.org/02ahky613","country_code":"MX","type":"education","lineage":["https://openalex.org/I87182695"]}],"countries":["MX"],"is_corresponding":false,"raw_author_name":"Hao Cheng","raw_affiliation_strings":["Northeastern University"],"affiliations":[{"raw_affiliation_string":"Northeastern University","institution_ids":["https://openalex.org/I87182695"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102775611","display_name":"Kaidi Xu","orcid":"https://orcid.org/0000-0003-4437-0671"},"institutions":[{"id":"https://openalex.org/I72816309","display_name":"Drexel University","ror":"https://ror.org/04bdffz58","country_code":"US","type":"education","lineage":["https://openalex.org/I72816309"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Kaidi Xu","raw_affiliation_strings":["Drexel University"],"affiliations":[{"raw_affiliation_string":"Drexel University","institution_ids":["https://openalex.org/I72816309"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101633365","display_name":"Zhengang Li","orcid":"https://orcid.org/0000-0001-6644-4761"},"institutions":[{"id":"https://openalex.org/I87182695","display_name":"Universidad del Noreste","ror":"https://ror.org/02ahky613","country_code":"MX","type":"education","lineage":["https://openalex.org/I87182695"]}],"countries":["MX"],"is_corresponding":false,"raw_author_name":"Zhengang Li","raw_affiliation_strings":["Northeastern University"],"affiliations":[{"raw_affiliation_string":"Northeastern University","institution_ids":["https://openalex.org/I87182695"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5073885088","display_name":"Pu Zhao","orcid":"https://orcid.org/0000-0001-5018-2859"},"institutions":[{"id":"https://openalex.org/I87182695","display_name":"Universidad del Noreste","ror":"https://ror.org/02ahky613","country_code":"MX","type":"education","lineage":["https://openalex.org/I87182695"]}],"countries":["MX"],"is_corresponding":false,"raw_author_name":"Pu Zhao","raw_affiliation_strings":["Northeastern University"],"affiliations":[{"raw_affiliation_string":"Northeastern University","institution_ids":["https://openalex.org/I87182695"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5042287562","display_name":"Chenan Wang","orcid":null},"institutions":[{"id":"https://openalex.org/I87182695","display_name":"Universidad del Noreste","ror":"https://ror.org/02ahky613","country_code":"MX","type":"education","lineage":["https://openalex.org/I87182695"]}],"countries":["MX"],"is_corresponding":false,"raw_author_name":"Chenan Wang","raw_affiliation_strings":["Northeastern University"],"affiliations":[{"raw_affiliation_string":"Northeastern University","institution_ids":["https://openalex.org/I87182695"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5043582832","display_name":"Xue Lin","orcid":"https://orcid.org/0000-0001-6210-8883"},"institutions":[{"id":"https://openalex.org/I87182695","display_name":"Universidad del Noreste","ror":"https://ror.org/02ahky613","country_code":"MX","type":"education","lineage":["https://openalex.org/I87182695"]}],"countries":["MX"],"is_corresponding":false,"raw_author_name":"Xue Lin","raw_affiliation_strings":["Northeastern University"],"affiliations":[{"raw_affiliation_string":"Northeastern University","institution_ids":["https://openalex.org/I87182695"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5041470575","display_name":"Bhavya Kailkhura","orcid":"https://orcid.org/0000-0002-2819-2919"},"institutions":[{"id":"https://openalex.org/I1282311441","display_name":"Lawrence Livermore National Laboratory","ror":"https://ror.org/041nk4h53","country_code":"US","type":"facility","lineage":["https://openalex.org/I1282311441","https://openalex.org/I1330989302","https://openalex.org/I198811213","https://openalex.org/I4210138311"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Bhavya Kailkhura","raw_affiliation_strings":["Lawrence Livermore National Laboratory"],"affiliations":[{"raw_affiliation_string":"Lawrence Livermore National Laboratory","institution_ids":["https://openalex.org/I1282311441"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5021708119","display_name":"Ryan Goldhahn","orcid":"https://orcid.org/0000-0001-6176-6745"},"institutions":[{"id":"https://openalex.org/I1282311441","display_name":"Lawrence Livermore National Laboratory","ror":"https://ror.org/041nk4h53","country_code":"US","type":"facility","lineage":["https://openalex.org/I1282311441","https://openalex.org/I1330989302","https://openalex.org/I198811213","https://openalex.org/I4210138311"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ryan Goldhahn","raw_affiliation_strings":["Lawrence Livermore National Laboratory"],"affiliations":[{"raw_affiliation_string":"Lawrence Livermore National Laboratory","institution_ids":["https://openalex.org/I1282311441"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.486,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.99997,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":76,"max":80},"biblio":{"volume":"33","issue":null,"first_page":"645","last_page":"655"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9433,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/deep-neural-networks","display_name":"Deep Neural Networks","score":0.6838077},{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.60066885},{"id":"https://openalex.org/keywords/ensemble-forecasting","display_name":"Ensemble forecasting","score":0.5727062},{"id":"https://openalex.org/keywords/news-aggregator","display_name":"News aggregator","score":0.5041801},{"id":"https://openalex.org/keywords/ensemble-learning","display_name":"Ensemble Learning","score":0.41714257}],"concepts":[{"id":"https://openalex.org/C37736160","wikidata":"https://www.wikidata.org/wiki/Q1801315","display_name":"Adversarial system","level":2,"score":0.854705},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7452651},{"id":"https://openalex.org/C2984842247","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep neural networks","level":3,"score":0.6838077},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.60066885},{"id":"https://openalex.org/C119898033","wikidata":"https://www.wikidata.org/wiki/Q3433888","display_name":"Ensemble forecasting","level":2,"score":0.5727062},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.53534585},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5204768},{"id":"https://openalex.org/C177918212","wikidata":"https://www.wikidata.org/wiki/Q803623","display_name":"Perturbation (astronomy)","level":2,"score":0.5069235},{"id":"https://openalex.org/C180505990","wikidata":"https://www.wikidata.org/wiki/Q498267","display_name":"News aggregator","level":2,"score":0.5041801},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.44647965},{"id":"https://openalex.org/C45942800","wikidata":"https://www.wikidata.org/wiki/Q245652","display_name":"Ensemble learning","level":2,"score":0.41714257},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.41448522},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/wacvw54805.2022.00071","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":50,"referenced_works":["https://openalex.org/W1673923490","https://openalex.org/W1945616565","https://openalex.org/W2119144962","https://openalex.org/W2160815625","https://openalex.org/W2194775991","https://openalex.org/W2243397390","https://openalex.org/W2340897893","https://openalex.org/W2554616628","https://openalex.org/W2887906331","https://openalex.org/W2896457183","https://openalex.org/W2911510572","https://openalex.org/W2912070915","https://openalex.org/W2915302122","https://openalex.org/W2928560789","https://openalex.org/W2945033152","https://openalex.org/W2962965870","https://openalex.org/W2963001136","https://openalex.org/W2963143631","https://openalex.org/W2963263347","https://openalex.org/W2963612069","https://openalex.org/W2963685823","https://openalex.org/W2963693747","https://openalex.org/W2963857521","https://openalex.org/W2963981420","https://openalex.org/W2964082701","https://openalex.org/W2964233199","https://openalex.org/W2964350391","https://openalex.org/W2964971928","https://openalex.org/W2971158639","https://openalex.org/W2972524765","https://openalex.org/W2973798619","https://openalex.org/W2986887500","https://openalex.org/W2997768846","https://openalex.org/W3001800955","https://openalex.org/W3008313523","https://openalex.org/W3009751875","https://openalex.org/W3039575763","https://openalex.org/W3044129898","https://openalex.org/W3080297477","https://openalex.org/W3091900426","https://openalex.org/W3097573595","https://openalex.org/W3098881644","https://openalex.org/W3104032928","https://openalex.org/W3108907903","https://openalex.org/W3139203094","https://openalex.org/W4244387609","https://openalex.org/W4288363831","https://openalex.org/W4293846201","https://openalex.org/W4300677102","https://openalex.org/W4394663350"],"related_works":["https://openalex.org/W4383221314","https://openalex.org/W4313346231","https://openalex.org/W4285785480","https://openalex.org/W3203790781","https://openalex.org/W3093978547","https://openalex.org/W3080754722","https://openalex.org/W2997056298","https://openalex.org/W2953536436","https://openalex.org/W2950183588","https://openalex.org/W2738001131"],"abstract_inverted_index":{"Deep":[0],"neural":[1],"networks":[2],"(DNNs)":[3],"have":[4,70],"been":[5,71],"adopted":[6],"in":[7,86,138,166,170],"many":[8],"application":[9],"domains":[10],"due":[11],"to":[12,52,73,103,172,188],"their":[13,17],"superior":[14],"performance.":[15],"However,":[16,43],"susceptibility":[18],"under":[19],"test-time":[20],"adversarial":[21,32,47,58,79,141,167],"perturbations":[22],"and":[23],"out-of-distribution":[24],"shifts":[25],"has":[26],"attracted":[27],"extensive":[28],"research":[29],"efforts.":[30],"The":[31],"training":[33,48,80],"provides":[34],"an":[35,117],"effective":[36],"defense":[37,217],"method":[38],"withstanding":[39],"evolving":[40],"attacking":[41],"methods.":[42],"DNNs":[44],"obtained":[45,137],"by":[46],"are":[49,62,127,136],"usually":[50],"robust":[51,102,176],"only":[53],"a":[54,130],"single":[55],"type":[56],"of":[57,88,97,119,158],"perturbation":[59,76,89,105,125,146],"that":[60],"they":[61],"trained":[63,154],"with.":[64],"To":[65,107],"tackle":[66],"this":[67],"problem,":[68],"improvements":[69],"made":[72],"incorporate":[74],"multiple":[75,104,222],"types":[77,126],"into":[78],"process,":[81],"but":[82],"with":[83,123,156],"limited":[84],"flexibility":[85],"terms":[87],"types.":[90,147],"This":[91],"work":[92],"investigates":[93],"the":[94,112,149,162,175,182,190,196,205],"design":[95],"problem":[96],"deep":[98],"learning":[99],"(DL)":[100],"systems":[101],"attacks.":[106],"maximize":[108],"flexibility,":[109],"we":[110,202],"adopt":[111],"model":[113,178,183,192,199,207],"ensemble":[114,118,177,191],"approach,":[115],"where":[116],"expert":[120,159],"models":[121,135],"dealing":[122],"various":[124],"integrated":[128],"through":[129,140],"trainable":[131],"aggregator":[132,150],"module.":[133],"Expert":[134],"parallel":[139],"training,":[142],"targeting":[143],"at":[144],"respective":[145],"Then,":[148],"module":[151],"is":[152,186],"(adversarially)":[153],"together":[155],"fine-tuning":[157],"models,":[160],"addressing":[161],"obfuscated":[163],"gradients":[164],"issue":[165],"robustness.":[168,211],"Furthermore,":[169],"order":[171],"practically":[173],"implement":[174],"onto":[179],"edge":[180],"devices,":[181],"compression":[184,200],"approach":[185],"leveraged":[187],"reduce":[189,204],"size.":[193],"By":[194],"exploring":[195],"most":[197],"suitable":[198],"scheme,":[201],"significantly":[203],"overall":[206],"size":[208],"without":[209],"compromising":[210],"Proposed":[212],"More":[213],"or":[214],"Less":[215],"(MoL)":[216],"outperforms":[218],"state-of-the-art":[219],"defenses":[220],"against":[221],"perturbations.":[223]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4213023864","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":1}],"updated_date":"2024-12-13T21:48:33.185154","created_date":"2022-02-24"}