{"id":"https://openalex.org/W4394625614","doi":"https://doi.org/10.1109/wacv57701.2024.00134","title":"ProcSim: Proxy-based Confidence for Robust Similarity Learning","display_name":"ProcSim: Proxy-based Confidence for Robust Similarity Learning","publication_year":2024,"publication_date":"2024-01-03","ids":{"openalex":"https://openalex.org/W4394625614","doi":"https://doi.org/10.1109/wacv57701.2024.00134"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/wacv57701.2024.00134","pdf_url":null,"source":{"id":"https://openalex.org/S4363607979","display_name":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2311.00668","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5050983858","display_name":"Oriol Barbany","orcid":"https://orcid.org/0000-0002-1379-9152"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Oriol Barbany","raw_affiliation_strings":["Institut de Robòtica i Informàtica Industrial, CSIC-UPC"],"affiliations":[{"raw_affiliation_string":"Institut de Robòtica i Informàtica Industrial, CSIC-UPC","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5108543316","display_name":"Xiaofan Lin","orcid":null},"institutions":[{"id":"https://openalex.org/I1311688040","display_name":"Amazon (United States)","ror":"https://ror.org/04mv4n011","country_code":"US","type":"company","lineage":["https://openalex.org/I1311688040"]},{"id":"https://openalex.org/I4210133358","display_name":"Search","ror":"https://ror.org/03f78hn46","country_code":"US","type":"nonprofit","lineage":["https://openalex.org/I4210133358"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Xiaofan Lin","raw_affiliation_strings":["Visual Search & AR, Amazon"],"affiliations":[{"raw_affiliation_string":"Visual Search & AR, Amazon","institution_ids":["https://openalex.org/I1311688040","https://openalex.org/I4210133358"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5024945124","display_name":"Muhammet Ba\u015ftan","orcid":"https://orcid.org/0000-0001-9714-2643"},"institutions":[{"id":"https://openalex.org/I1311688040","display_name":"Amazon (United States)","ror":"https://ror.org/04mv4n011","country_code":"US","type":"company","lineage":["https://openalex.org/I1311688040"]},{"id":"https://openalex.org/I4210133358","display_name":"Search","ror":"https://ror.org/03f78hn46","country_code":"US","type":"nonprofit","lineage":["https://openalex.org/I4210133358"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Muhammet Bastan","raw_affiliation_strings":["Visual Search & AR, Amazon"],"affiliations":[{"raw_affiliation_string":"Visual Search & AR, Amazon","institution_ids":["https://openalex.org/I1311688040","https://openalex.org/I4210133358"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5055026781","display_name":"Arnab Dhua","orcid":"https://orcid.org/0009-0007-8233-4301"},"institutions":[{"id":"https://openalex.org/I1311688040","display_name":"Amazon (United States)","ror":"https://ror.org/04mv4n011","country_code":"US","type":"company","lineage":["https://openalex.org/I1311688040"]},{"id":"https://openalex.org/I4210133358","display_name":"Search","ror":"https://ror.org/03f78hn46","country_code":"US","type":"nonprofit","lineage":["https://openalex.org/I4210133358"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Arnab Dhua","raw_affiliation_strings":["Visual Search & AR, Amazon"],"affiliations":[{"raw_affiliation_string":"Visual Search & AR, Amazon","institution_ids":["https://openalex.org/I1311688040","https://openalex.org/I4210133358"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":84},"biblio":{"volume":null,"issue":null,"first_page":"1297","last_page":"1306"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.982,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.982,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13702","display_name":"Machine Learning in Healthcare","score":0.9674,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9616,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/proxy","display_name":"Proxy (statistics)","score":0.7158278},{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.52263546}],"concepts":[{"id":"https://openalex.org/C2780148112","wikidata":"https://www.wikidata.org/wiki/Q1432581","display_name":"Proxy (statistics)","level":2,"score":0.7158278},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6504326},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5579693},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.52263546},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.43173885},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/wacv57701.2024.00134","pdf_url":null,"source":{"id":"https://openalex.org/S4363607979","display_name":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2311.00668","pdf_url":"http://arxiv.org/pdf/2311.00668","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2311.00668","pdf_url":"http://arxiv.org/pdf/2311.00668","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":49,"referenced_works":["https://openalex.org/W2062413904","https://openalex.org/W2077071968","https://openalex.org/W2081580037","https://openalex.org/W2096733369","https://openalex.org/W2117539524","https://openalex.org/W2133059825","https://openalex.org/W2138011018","https://openalex.org/W2157364932","https://openalex.org/W2194775991","https://openalex.org/W2296073425","https://openalex.org/W2605102252","https://openalex.org/W2895347732","https://openalex.org/W2896457183","https://openalex.org/W2947049994","https://openalex.org/W2948077755","https://openalex.org/W2948303601","https://openalex.org/W2952133801","https://openalex.org/W2953271441","https://openalex.org/W2962697512","https://openalex.org/W2962762068","https://openalex.org/W2963026686","https://openalex.org/W2963350250","https://openalex.org/W2963677766","https://openalex.org/W2963735582","https://openalex.org/W2964271799","https://openalex.org/W2964292098","https://openalex.org/W2985817549","https://openalex.org/W2991234496","https://openalex.org/W2998702515","https://openalex.org/W3034202663","https://openalex.org/W3034303554","https://openalex.org/W3034403061","https://openalex.org/W3035014997","https://openalex.org/W3069744584","https://openalex.org/W3105335547","https://openalex.org/W3105402527","https://openalex.org/W3175847745","https://openalex.org/W4212836813","https://openalex.org/W4212867385","https://openalex.org/W4283219888","https://openalex.org/W4292794019","https://openalex.org/W4295312788","https://openalex.org/W4297791103","https://openalex.org/W4312533318","https://openalex.org/W4312538130","https://openalex.org/W4312551514","https://openalex.org/W4312601326","https://openalex.org/W4313161909","https://openalex.org/W4319459201"],"related_works":["https://openalex.org/W4386462264","https://openalex.org/W4364306694","https://openalex.org/W4312192474","https://openalex.org/W4306674287","https://openalex.org/W4283697347","https://openalex.org/W4210805261","https://openalex.org/W3170094116","https://openalex.org/W3107602296","https://openalex.org/W3046775127","https://openalex.org/W2961085424"],"abstract_inverted_index":{"Deep":[0],"Metric":[1],"Learning":[2],"(DML)":[3],"methods":[4,40],"aim":[5],"at":[6],"learning":[7],"an":[8,55],"embedding":[9],"space":[10],"in":[11,60],"which":[12],"distances":[13],"are":[14,41],"closely":[15],"related":[16],"to":[17,43,46,66,88,95],"the":[18,23,48,58,92,104,111,119],"inherent":[19],"semantic":[20],"similarity":[21],"of":[22,50,57],"inputs.":[24],"Previous":[25],"studies":[26],"have":[27],"shown":[28],"that":[29,83,103],"popular":[30],"benchmark":[31,113],"datasets":[32,114],"often":[33],"contain":[34],"numerous":[35],"wrong":[36],"labels,":[37],"and":[38,63,118],"DML":[39,75,112],"susceptible":[42],"them.":[44],"Intending":[45],"study":[47],"effect":[49],"realistic":[51],"noise,":[52],"we":[53,77],"create":[54],"ontology":[56],"classes":[59],"a":[61,80,85],"dataset":[62],"use":[64],"it":[65],"simulate":[67],"semantically":[68,121],"coherent":[69,122],"labeling":[70],"mistakes.":[71],"To":[72],"train":[73],"robust":[74],"models,":[76],"propose":[78],"ProcSim,":[79],"simple":[81],"framework":[82],"assigns":[84],"confidence":[86],"score":[87],"each":[89],"sample":[90],"using":[91],"normalized":[93],"distance":[94],"its":[96],"class":[97],"representative.":[98],"The":[99],"experimental":[100],"results":[101],"show":[102],"proposed":[105,120],"method":[106],"achieves":[107],"state-of-the-art":[108],"performance":[109],"on":[110],"injected":[115],"with":[116],"uniform":[117],"noise.":[123]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4394625614","counts_by_year":[],"updated_date":"2024-12-05T02:12:18.405941","created_date":"2024-04-10"}