{"id":"https://openalex.org/W4394593156","doi":"https://doi.org/10.1109/wacv57701.2024.00035","title":"Amodal Intra-class Instance Segmentation: Synthetic Datasets and Benchmark","display_name":"Amodal Intra-class Instance Segmentation: Synthetic Datasets and Benchmark","publication_year":2024,"publication_date":"2024-01-03","ids":{"openalex":"https://openalex.org/W4394593156","doi":"https://doi.org/10.1109/wacv57701.2024.00035"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/wacv57701.2024.00035","pdf_url":null,"source":{"id":"https://openalex.org/S4363607979","display_name":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2303.06596","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5051951717","display_name":"Jiayang Ao","orcid":"https://orcid.org/0000-0001-6416-1215"},"institutions":[{"id":"https://openalex.org/I165779595","display_name":"The University of Melbourne","ror":"https://ror.org/01ej9dk98","country_code":"AU","type":"funder","lineage":["https://openalex.org/I165779595"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Jiayang Ao","raw_affiliation_strings":["The University of Melbourne,Parkville,VIC,3010"],"affiliations":[{"raw_affiliation_string":"The University of Melbourne,Parkville,VIC,3010","institution_ids":["https://openalex.org/I165779595"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5083239184","display_name":"Qiuhong Ke","orcid":"https://orcid.org/0000-0001-9998-3614"},"institutions":[{"id":"https://openalex.org/I56590836","display_name":"Monash University","ror":"https://ror.org/02bfwt286","country_code":"AU","type":"funder","lineage":["https://openalex.org/I56590836"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Qiuhong Ke","raw_affiliation_strings":["Monash University,Clayton,VIC,3800"],"affiliations":[{"raw_affiliation_string":"Monash University,Clayton,VIC,3800","institution_ids":["https://openalex.org/I56590836"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5084653483","display_name":"Krista A. Ehinger","orcid":"https://orcid.org/0000-0003-2247-3020"},"institutions":[{"id":"https://openalex.org/I165779595","display_name":"The University of Melbourne","ror":"https://ror.org/01ej9dk98","country_code":"AU","type":"funder","lineage":["https://openalex.org/I165779595"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Krista A. Ehinger","raw_affiliation_strings":["The University of Melbourne,Parkville,VIC,3010"],"affiliations":[{"raw_affiliation_string":"The University of Melbourne,Parkville,VIC,3010","institution_ids":["https://openalex.org/I165779595"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.501,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.807518,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":77,"max":88},"biblio":{"volume":null,"issue":null,"first_page":"280","last_page":"289"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10201","display_name":"Speech Recognition and Synthesis","score":0.7042,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10201","display_name":"Speech Recognition and Synthesis","score":0.7042,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11439","display_name":"Video Analysis and Summarization","score":0.628,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/amodal-perception","display_name":"Amodal perception","score":0.8782139},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.76631075},{"id":"https://openalex.org/keywords/synthetic-data","display_name":"Synthetic data","score":0.46030572}],"concepts":[{"id":"https://openalex.org/C174478892","wikidata":"https://www.wikidata.org/wiki/Q4747455","display_name":"Amodal perception","level":3,"score":0.8782139},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.76631075},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6997287},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.69117904},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.6070327},{"id":"https://openalex.org/C2777212361","wikidata":"https://www.wikidata.org/wiki/Q5127848","display_name":"Class (philosophy)","level":2,"score":0.5963558},{"id":"https://openalex.org/C160920958","wikidata":"https://www.wikidata.org/wiki/Q7662746","display_name":"Synthetic data","level":2,"score":0.46030572},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.44338578},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.35464543},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.09017703},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.075246155},{"id":"https://openalex.org/C169900460","wikidata":"https://www.wikidata.org/wiki/Q2200417","display_name":"Cognition","level":2,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C169760540","wikidata":"https://www.wikidata.org/wiki/Q207011","display_name":"Neuroscience","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/wacv57701.2024.00035","pdf_url":null,"source":{"id":"https://openalex.org/S4363607979","display_name":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2303.06596","pdf_url":"http://arxiv.org/pdf/2303.06596","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2303.06596","pdf_url":"http://arxiv.org/pdf/2303.06596","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":35,"referenced_works":["https://openalex.org/W1545423298","https://openalex.org/W1861492603","https://openalex.org/W2047643928","https://openalex.org/W2194775991","https://openalex.org/W2319506471","https://openalex.org/W2340897893","https://openalex.org/W2565639579","https://openalex.org/W2604176797","https://openalex.org/W2618530766","https://openalex.org/W2948467257","https://openalex.org/W2963150697","https://openalex.org/W2963243172","https://openalex.org/W2963660453","https://openalex.org/W2963912358","https://openalex.org/W2964241181","https://openalex.org/W2964325922","https://openalex.org/W2990578105","https://openalex.org/W3024956434","https://openalex.org/W3035049382","https://openalex.org/W3035358681","https://openalex.org/W3035637413","https://openalex.org/W3091093964","https://openalex.org/W3167260844","https://openalex.org/W3169004342","https://openalex.org/W3173230514","https://openalex.org/W3180169285","https://openalex.org/W3200139538","https://openalex.org/W3201721053","https://openalex.org/W3216100300","https://openalex.org/W4246193833","https://openalex.org/W4285813072","https://openalex.org/W4312280796","https://openalex.org/W4312322023","https://openalex.org/W4386057743","https://openalex.org/W4386113267"],"related_works":["https://openalex.org/W4387775854","https://openalex.org/W4321460497","https://openalex.org/W4294017904","https://openalex.org/W4284674805","https://openalex.org/W3158435931","https://openalex.org/W2951289157","https://openalex.org/W2153903859","https://openalex.org/W2086050082","https://openalex.org/W2048200892","https://openalex.org/W1589158839"],"abstract_inverted_index":{"Images":[0],"of":[1,26,42,73,77,146],"realistic":[2],"scenes":[3],"often":[4],"contain":[5,70],"intra-class":[6,54,78,114,147],"objects":[7,28],"that":[8,20,123],"are":[9],"heavily":[10],"occluded":[11,24],"from":[12],"each":[13],"other,":[14],"making":[15],"the":[16,23,27,40,129,144],"amodal":[17,44,62,66,85,108],"perception":[18],"task":[19],"requires":[21],"parsing":[22],"parts":[25],"challenging.":[29],"Although":[30],"important":[31],"for":[32,64,94,107,113],"downstream":[33],"tasks":[34],"such":[35],"as":[36],"robotic":[37],"grasping":[38],"systems,":[39],"lack":[41],"large-scale":[43],"datasets":[45,63],"with":[46,82,104],"detailed":[47],"annotations":[48],"makes":[49],"it":[50],"difficult":[51],"to":[52],"model":[53],"occlusions":[55],"explicitly.":[56],"This":[57],"paper":[58],"introduces":[59],"two":[60],"new":[61],"image":[65],"completion":[67],"tasks,":[68],"which":[69],"a":[71,101],"total":[72],"over":[74],"267K":[75],"images":[76],"occlusion":[79,115,148],"scenarios,":[80],"annotated":[81],"multiple":[83],"masks,":[84],"bounding":[86],"boxes,":[87],"dual":[88],"order":[89],"relations":[90],"and":[91,96,152],"full":[92],"appearance":[93],"instances":[95],"background.":[97],"We":[98],"also":[99],"present":[100],"point-supervised":[102],"scheme":[103],"layer":[105,136],"priors":[106,137],"instance":[109],"segmentation":[110],"specifically":[111],"designed":[112],"scenarios":[116],"1":[119],".":[120],"Experiments":[121],"show":[122],"our":[124,135],"weakly":[125],"supervised":[126,132],"approach":[127],"outperforms":[128],"SOTA":[130],"fully":[131],"methods,":[133],"while":[134],"design":[138],"exhibits":[139],"remarkable":[140],"performance":[141],"improvements":[142],"in":[143,149],"case":[145],"both":[150],"synthetic":[151],"real":[153],"images.":[154]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4394593156","counts_by_year":[{"year":2025,"cited_by_count":1}],"updated_date":"2025-05-01T07:04:12.469965","created_date":"2024-04-10"}