{"id":"https://openalex.org/W3009946848","doi":"https://doi.org/10.1109/wacv45572.2020.9093639","title":"Self-Attention Network for Skeleton-based Human Action Recognition","display_name":"Self-Attention Network for Skeleton-based Human Action Recognition","publication_year":2020,"publication_date":"2020-03-01","ids":{"openalex":"https://openalex.org/W3009946848","doi":"https://doi.org/10.1109/wacv45572.2020.9093639","mag":"3009946848"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/wacv45572.2020.9093639","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/1912.08435","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5036306083","display_name":"Sangwoo Cho","orcid":null},"institutions":[{"id":"https://openalex.org/I106165777","display_name":"University of Central Florida","ror":"https://ror.org/036nfer12","country_code":"US","type":"funder","lineage":["https://openalex.org/I106165777"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Sangwoo Cho","raw_affiliation_strings":["Computer Science Department, University of Central Florida, Orlando, FL, USA"],"affiliations":[{"raw_affiliation_string":"Computer Science Department, University of Central Florida, Orlando, FL, USA","institution_ids":["https://openalex.org/I106165777"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5059281893","display_name":"M. H. Maqbool","orcid":"https://orcid.org/0009-0006-9547-666X"},"institutions":[{"id":"https://openalex.org/I106165777","display_name":"University of Central Florida","ror":"https://ror.org/036nfer12","country_code":"US","type":"funder","lineage":["https://openalex.org/I106165777"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Muhammad Hasan Maqbool","raw_affiliation_strings":["Computer Science Department, University of Central Florida, Orlando, FL, USA"],"affiliations":[{"raw_affiliation_string":"Computer Science Department, University of Central Florida, Orlando, FL, USA","institution_ids":["https://openalex.org/I106165777"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101783051","display_name":"Fei Liu","orcid":"https://orcid.org/0000-0003-0266-6896"},"institutions":[{"id":"https://openalex.org/I106165777","display_name":"University of Central Florida","ror":"https://ror.org/036nfer12","country_code":"US","type":"funder","lineage":["https://openalex.org/I106165777"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Fei Liu","raw_affiliation_strings":["Computer Science Department, University of Central Florida, Orlando, FL, USA"],"affiliations":[{"raw_affiliation_string":"Computer Science Department, University of Central Florida, Orlando, FL, USA","institution_ids":["https://openalex.org/I106165777"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5076117344","display_name":"Hassan Foroosh","orcid":"https://orcid.org/0000-0002-7601-8165"},"institutions":[{"id":"https://openalex.org/I106165777","display_name":"University of Central Florida","ror":"https://ror.org/036nfer12","country_code":"US","type":"funder","lineage":["https://openalex.org/I106165777"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Hassan Foroosh","raw_affiliation_strings":["Computer Science Department, University of Central Florida, Orlando, FL, USA"],"affiliations":[{"raw_affiliation_string":"Computer Science Department, University of Central Florida, Orlando, FL, USA","institution_ids":["https://openalex.org/I106165777"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":4.796,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":102,"citation_normalized_percentile":{"value":0.999865,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":98,"max":99},"biblio":{"volume":null,"issue":null,"first_page":"624","last_page":"633"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12740","display_name":"Gait Recognition and Analysis","score":0.9921,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.992,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/rgb-color-model","display_name":"RGB color model","score":0.6151305},{"id":"https://openalex.org/keywords/skeleton","display_name":"Skeleton (computer programming)","score":0.5879692},{"id":"https://openalex.org/keywords/action-recognition","display_name":"Action Recognition","score":0.54731333},{"id":"https://openalex.org/keywords/representation","display_name":"Representation","score":0.50298136}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.79764307},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.64961857},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.62072533},{"id":"https://openalex.org/C82990744","wikidata":"https://www.wikidata.org/wiki/Q166194","display_name":"RGB color model","level":2,"score":0.6151305},{"id":"https://openalex.org/C184337299","wikidata":"https://www.wikidata.org/wiki/Q1437428","display_name":"Semantics (computer science)","level":2,"score":0.6078489},{"id":"https://openalex.org/C147168706","wikidata":"https://www.wikidata.org/wiki/Q1457734","display_name":"Recurrent neural network","level":3,"score":0.5955458},{"id":"https://openalex.org/C18969341","wikidata":"https://www.wikidata.org/wiki/Q1169129","display_name":"Skeleton (computer programming)","level":2,"score":0.5879692},{"id":"https://openalex.org/C2987834672","wikidata":"https://www.wikidata.org/wiki/Q4677630","display_name":"Action recognition","level":3,"score":0.54731333},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.50739425},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.50298136},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.45693508},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.4273811},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.34380847},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.32520092},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.14960584},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C2777212361","wikidata":"https://www.wikidata.org/wiki/Q5127848","display_name":"Class (philosophy)","level":2,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/wacv45572.2020.9093639","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1912.08435","pdf_url":"https://arxiv.org/pdf/1912.08435","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1912.08435","pdf_url":"https://arxiv.org/pdf/1912.08435","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":45,"referenced_works":["https://openalex.org/W1498368596","https://openalex.org/W1522301498","https://openalex.org/W1926645898","https://openalex.org/W1950788856","https://openalex.org/W203345490","https://openalex.org/W2048821851","https://openalex.org/W2056339039","https://openalex.org/W2056898157","https://openalex.org/W2065249004","https://openalex.org/W2098339052","https://openalex.org/W2099634219","https://openalex.org/W2106996050","https://openalex.org/W2156303437","https://openalex.org/W2307035320","https://openalex.org/W2415469094","https://openalex.org/W2507009361","https://openalex.org/W2510185399","https://openalex.org/W2526041356","https://openalex.org/W2593146028","https://openalex.org/W2603861860","https://openalex.org/W2604321021","https://openalex.org/W2606294640","https://openalex.org/W2619947201","https://openalex.org/W2778523960","https://openalex.org/W2798644314","https://openalex.org/W2801616669","https://openalex.org/W2802979841","https://openalex.org/W2888539709","https://openalex.org/W2896457183","https://openalex.org/W2947986857","https://openalex.org/W2950568498","https://openalex.org/W2950784811","https://openalex.org/W2952587893","https://openalex.org/W2962730651","https://openalex.org/W2962788148","https://openalex.org/W2963076818","https://openalex.org/W2963091558","https://openalex.org/W2963341956","https://openalex.org/W2963369114","https://openalex.org/W2963403868","https://openalex.org/W2964121744","https://openalex.org/W2964134613","https://openalex.org/W3098538019","https://openalex.org/W3106158170","https://openalex.org/W4385245566"],"related_works":["https://openalex.org/W4399611050","https://openalex.org/W4298287631","https://openalex.org/W4225394202","https://openalex.org/W3170431411","https://openalex.org/W3036642985","https://openalex.org/W3032952384","https://openalex.org/W2953061907","https://openalex.org/W2796878614","https://openalex.org/W2004108207","https://openalex.org/W1847088711"],"abstract_inverted_index":{"Skeleton-based":[0],"action":[1,54],"recognition":[2],"has":[3,105],"recently":[4],"attracted":[5],"a":[6,79],"lot":[7],"of":[8,30,58,84,93,109,138],"attention.":[9],"Researchers":[10],"are":[11,35,148],"coming":[12],"up":[13,77],"with":[14,78,126,150],"new":[15],"approaches":[16],"for":[17],"extracting":[18,110],"spatio-temporal":[19,87],"relations":[20],"and":[21,46,82,100,143,159,163,168],"making":[22],"considerable":[23],"progress":[24],"on":[25,166,176],"large-scale":[26],"skeleton-based":[27,53],"datasets.":[28],"Most":[29],"the":[31,56,70,106,121],"architectures":[32],"being":[33],"proposed":[34],"based":[36],"upon":[37],"recurrent":[38],"neural":[39,43],"networks":[40,44],"(RNNs),":[41],"convolutional":[42],"(CNNs)":[45],"graph-based":[47],"CNNs.":[48],"When":[49],"it":[50],"comes":[51],"to":[52,75],"recognition,":[55],"importance":[57],"long":[59,85],"term":[60,86],"contextual":[61],"information":[62],"is":[63,66],"central":[64],"which":[65,130],"not":[67],"captured":[68],"by":[69,113,161],"current":[71],"architectures.":[72],"In":[73],"order":[74],"come":[76],"better":[80,171],"representation":[81],"capturing":[83,114],"relationships,":[88],"we":[89],"propose":[90],"three":[91],"variants":[92,104,129,142],"Self-Attention":[94,139],"Network":[95,124,140,146],"(SAN),":[96],"namely,":[97],"SAN-V1,":[98],"SAN-V2":[99],"SAN-V3.":[101],"Our":[102,153],"SAN":[103,128],"impressive":[107],"capability":[108],"high-level":[111],"semantics":[112],"long-range":[115],"correlations.":[116],"We":[117],"have":[118],"also":[119],"integrated":[120],"Temporal":[122,144],"Segment":[123,145],"(TSN)":[125,147],"our":[127],"resulted":[131],"in":[132],"improved":[133],"overall":[134],"performance.":[135],"Different":[136],"configurations":[137],"(SAN)":[141],"explored":[149],"extensive":[151],"experiments.":[152],"chosen":[154],"configuration":[155],"outperforms":[156],"state-of-the-art":[157,174],"Top-1":[158],"Top-5":[160],"4.4%":[162],"7.9%":[164],"respectively":[165],"Kinetics":[167],"shows":[169],"consistently":[170],"performance":[172],"than":[173],"methods":[175],"NTU":[177],"RGB+D.":[178]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3009946848","counts_by_year":[{"year":2025,"cited_by_count":6},{"year":2024,"cited_by_count":19},{"year":2023,"cited_by_count":20},{"year":2022,"cited_by_count":25},{"year":2021,"cited_by_count":23},{"year":2020,"cited_by_count":9}],"updated_date":"2025-05-04T23:57:31.892587","created_date":"2020-03-13"}