{"id":"https://openalex.org/W4389544907","doi":"https://doi.org/10.1109/vtc2023-fall60731.2023.10333706","title":"Portability of Hybrid machine learning based model for anomaly forecasting in mobile networks","display_name":"Portability of Hybrid machine learning based model for anomaly forecasting in mobile networks","publication_year":2023,"publication_date":"2023-10-10","ids":{"openalex":"https://openalex.org/W4389544907","doi":"https://doi.org/10.1109/vtc2023-fall60731.2023.10333706"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/vtc2023-fall60731.2023.10333706","pdf_url":null,"source":{"id":"https://openalex.org/S4363607774","display_name":"2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5037904071","display_name":"Sara Kassan","orcid":null},"institutions":[{"id":"https://openalex.org/I19370010","display_name":"Orange (France)","ror":"https://ror.org/035j0tq82","country_code":"FR","type":"company","lineage":["https://openalex.org/I19370010"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Sara Kassan","raw_affiliation_strings":["Orange Labs, Belfort, France"],"affiliations":[{"raw_affiliation_string":"Orange Labs, Belfort, France","institution_ids":["https://openalex.org/I19370010"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5075990284","display_name":"Imed Hadj\u2010Kacem","orcid":"https://orcid.org/0000-0002-5466-8490"},"institutions":[{"id":"https://openalex.org/I19370010","display_name":"Orange (France)","ror":"https://ror.org/035j0tq82","country_code":"FR","type":"company","lineage":["https://openalex.org/I19370010"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Imed Hadj-Kacem","raw_affiliation_strings":["Orange Labs, Belfort, France"],"affiliations":[{"raw_affiliation_string":"Orange Labs, Belfort, France","institution_ids":["https://openalex.org/I19370010"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5033082326","display_name":"Sana Ben Jemaa","orcid":null},"institutions":[{"id":"https://openalex.org/I19370010","display_name":"Orange (France)","ror":"https://ror.org/035j0tq82","country_code":"FR","type":"company","lineage":["https://openalex.org/I19370010"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Sana Ben Jemaa","raw_affiliation_strings":["Orange Labs, Paris, France"],"affiliations":[{"raw_affiliation_string":"Orange Labs, Paris, France","institution_ids":["https://openalex.org/I19370010"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5034314245","display_name":"Sylvain Allio","orcid":"https://orcid.org/0000-0001-5540-457X"},"institutions":[{"id":"https://openalex.org/I19370010","display_name":"Orange (France)","ror":"https://ror.org/035j0tq82","country_code":"FR","type":"company","lineage":["https://openalex.org/I19370010"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Sylvain Allio","raw_affiliation_strings":["Orange Labs, Belfort, France"],"affiliations":[{"raw_affiliation_string":"Orange Labs, Belfort, France","institution_ids":["https://openalex.org/I19370010"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":68},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"7"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9974,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9974,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11980","display_name":"Human Mobility and Location-Based Analysis","score":0.9956,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10064","display_name":"Complex Network Analysis Techniques","score":0.9895,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/software-portability","display_name":"Software portability","score":0.8300937},{"id":"https://openalex.org/keywords/anomaly","display_name":"Anomaly (physics)","score":0.6018964}],"concepts":[{"id":"https://openalex.org/C63000827","wikidata":"https://www.wikidata.org/wiki/Q3080428","display_name":"Software portability","level":2,"score":0.8300937},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.72622406},{"id":"https://openalex.org/C12997251","wikidata":"https://www.wikidata.org/wiki/Q567560","display_name":"Anomaly (physics)","level":2,"score":0.6018964},{"id":"https://openalex.org/C739882","wikidata":"https://www.wikidata.org/wiki/Q3560506","display_name":"Anomaly detection","level":2,"score":0.45570713},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4178938},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3910171},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.17447385},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C26873012","wikidata":"https://www.wikidata.org/wiki/Q214781","display_name":"Condensed matter physics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/vtc2023-fall60731.2023.10333706","pdf_url":null,"source":{"id":"https://openalex.org/S4363607774","display_name":"2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":10,"referenced_works":["https://openalex.org/W2028692319","https://openalex.org/W2278186031","https://openalex.org/W2365849797","https://openalex.org/W2558600380","https://openalex.org/W2562050914","https://openalex.org/W2762605243","https://openalex.org/W2768671728","https://openalex.org/W3035061658","https://openalex.org/W4312332676","https://openalex.org/W4386214598"],"related_works":["https://openalex.org/W4394896187","https://openalex.org/W4306674287","https://openalex.org/W4290647774","https://openalex.org/W3210364259","https://openalex.org/W3207797160","https://openalex.org/W3189286258","https://openalex.org/W3107602296","https://openalex.org/W3046775127","https://openalex.org/W2961085424","https://openalex.org/W2806741695"],"abstract_inverted_index":{"The":[0,133,155,198],"management":[1],"of":[2,21,48,51,83,93,103,124,135,161],"future":[3,40,67,75,192],"cellular":[4],"networks":[5,102],"can":[6,146],"be":[7,147],"automatically":[8],"adapted":[9],"by":[10],"machine":[11,25,109],"learning":[12,26,110],"models.":[13],"In":[14,117,220],"this":[15,118,202],"article,":[16],"we":[17,105,120],"present":[18,121],"the":[19,30,46,52,56,86,107,122,206,211,226],"portability":[20,123,136,213],"a":[22,80,125,142,159,162,180,186,215],"proposed":[23,126],"hybrid":[24,58,108,127,156],"model":[27,59,111,128,157],"to":[28,35,65,73,78,112,150,190,217,232],"forecast":[29,66,191],"network":[31,71],"congestion":[32,41,68,115,193],"allowing,":[33],"operators":[34,72],"pro-actively":[36],"monitor":[37],"and":[38,69,131,185],"control":[39],"before":[42],"occurring.":[43],"To":[44],"overcome":[45],"quality":[47,82],"service":[49,84],"degradation":[50],"radio":[53,195],"access":[54,196],"network,":[55],"spatio-temporal":[57,114],"must":[60],"involve":[61],"automatic":[62],"quick":[63],"response":[64],"alert":[70],"correct":[74],"congested":[76],"cells":[77,173,228],"provide":[79],"continuous":[81],"for":[85,225,229],"subscribers.":[87],"Based":[88],"on":[89],"real":[90],"field":[91],"data":[92],"key":[94],"performance":[95],"indicators":[96],"from":[97,141,214],"operational":[98],"long":[99],"term":[100],"evolution":[101],"Orange,":[104],"apply":[106],"ensure":[113],"forecasting.":[116],"paper,":[119],"in":[129,171,175,182,194,201],"space":[130],"time.":[132,237],"idea":[134],"is":[137,158,223],"that":[138,169,178,205],"knowledge":[139],"extracted":[140],"specific":[143],"city":[144,216],"environment":[145],"applied":[148,224],"directly":[149],"another":[151,218],"different":[152,230],"cities":[153,177],"environment.":[154],"combination":[160],"Latent":[163],"Block":[164],"Model":[165],"(LBM)":[166],"co-clustering":[167,208],"technique":[168,189,209],"succeeds":[170],"grouping":[172],"located":[174],"distant":[176],"have":[179],"similarity":[181],"their":[183],"behaviors":[184],"logistic":[187],"regression":[188],"networks.":[197],"experiments":[199],"presented":[200],"article":[203],"confirm":[204],"LBM":[207],"allows":[210],"model's":[212],"one.":[219],"addition,":[221],"it":[222],"same":[227],"months":[231],"validate":[233],"its":[234],"stability":[235],"over":[236]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4389544907","counts_by_year":[],"updated_date":"2024-12-08T03:10:02.508402","created_date":"2023-12-12"}