{"id":"https://openalex.org/W4206199457","doi":"https://doi.org/10.1109/vcip53242.2021.9675393","title":"Deep Metric Learning for Human Action Recognition with SlowFast Networks","display_name":"Deep Metric Learning for Human Action Recognition with SlowFast Networks","publication_year":2021,"publication_date":"2021-12-05","ids":{"openalex":"https://openalex.org/W4206199457","doi":"https://doi.org/10.1109/vcip53242.2021.9675393"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/vcip53242.2021.9675393","pdf_url":null,"source":{"id":"https://openalex.org/S4363608378","display_name":"2021 International Conference on Visual Communications and Image Processing (VCIP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5051715662","display_name":"Shanmeng Shi","orcid":null},"institutions":[{"id":"https://openalex.org/I149594827","display_name":"Xidian University","ror":"https://ror.org/05s92vm98","country_code":"CN","type":"education","lineage":["https://openalex.org/I149594827"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shanmeng Shi","raw_affiliation_strings":["School of Electronic Engineering, Xidian University, China"],"affiliations":[{"raw_affiliation_string":"School of Electronic Engineering, Xidian University, China","institution_ids":["https://openalex.org/I149594827"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5003623628","display_name":"Cheolkon Jung","orcid":"https://orcid.org/0000-0003-0299-7206"},"institutions":[{"id":"https://openalex.org/I149594827","display_name":"Xidian University","ror":"https://ror.org/05s92vm98","country_code":"CN","type":"education","lineage":["https://openalex.org/I149594827"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Cheolkon Jung","raw_affiliation_strings":["School of Electronic Engineering, Xidian University, China"],"affiliations":[{"raw_affiliation_string":"School of Electronic Engineering, Xidian University, China","institution_ids":["https://openalex.org/I149594827"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.246,"has_fulltext":false,"cited_by_count":4,"citation_normalized_percentile":{"value":0.522735,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":76,"max":79},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"5"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12740","display_name":"Gait Recognition and Analysis","score":0.999,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9972,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.5227732},{"id":"https://openalex.org/keywords/feature-vector","display_name":"Feature vector","score":0.4564609},{"id":"https://openalex.org/keywords/feature-learning","display_name":"Feature Learning","score":0.43623033}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7859573},{"id":"https://openalex.org/C176217482","wikidata":"https://www.wikidata.org/wiki/Q860554","display_name":"Metric (unit)","level":2,"score":0.7384122},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7333899},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.730604},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.6918311},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.5227732},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5082092},{"id":"https://openalex.org/C126042441","wikidata":"https://www.wikidata.org/wiki/Q1324888","display_name":"Frame (networking)","level":2,"score":0.4979682},{"id":"https://openalex.org/C36503486","wikidata":"https://www.wikidata.org/wiki/Q11235244","display_name":"Domain (mathematical analysis)","level":2,"score":0.49521175},{"id":"https://openalex.org/C83665646","wikidata":"https://www.wikidata.org/wiki/Q42139305","display_name":"Feature vector","level":2,"score":0.4564609},{"id":"https://openalex.org/C2777212361","wikidata":"https://www.wikidata.org/wiki/Q5127848","display_name":"Class (philosophy)","level":2,"score":0.44916824},{"id":"https://openalex.org/C59404180","wikidata":"https://www.wikidata.org/wiki/Q17013334","display_name":"Feature learning","level":2,"score":0.43623033},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3240463},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.11290622},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C21547014","wikidata":"https://www.wikidata.org/wiki/Q1423657","display_name":"Operations management","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/vcip53242.2021.9675393","pdf_url":null,"source":{"id":"https://openalex.org/S4363608378","display_name":"2021 International Conference on Visual Communications and Image Processing (VCIP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61872280"}],"datasets":[],"versions":[],"referenced_works_count":19,"referenced_works":["https://openalex.org/W1522734439","https://openalex.org/W2053186076","https://openalex.org/W2097117768","https://openalex.org/W2106053110","https://openalex.org/W2117154949","https://openalex.org/W2138621090","https://openalex.org/W2156303437","https://openalex.org/W2507009361","https://openalex.org/W255708204","https://openalex.org/W2753526808","https://openalex.org/W28988658","https://openalex.org/W2941239341","https://openalex.org/W2951183276","https://openalex.org/W2963026686","https://openalex.org/W2963155035","https://openalex.org/W2964271799","https://openalex.org/W2990503944","https://openalex.org/W4249279051","https://openalex.org/W764651262"],"related_works":["https://openalex.org/W3131501806","https://openalex.org/W3006008237","https://openalex.org/W2849310602","https://openalex.org/W2807745940","https://openalex.org/W2799683370","https://openalex.org/W2786094008","https://openalex.org/W2419146053","https://openalex.org/W2345479200","https://openalex.org/W2183306018","https://openalex.org/W2081900870"],"abstract_inverted_index":{"In":[0],"this":[1],"paper,":[2],"we":[3,56],"propose":[4],"deep":[5,43,58,114],"metric":[6,44,59,115],"learning":[7,45,60,116],"for":[8],"human":[9,54,125],"action":[10,126],"recognition":[11],"with":[12,34,136],"SlowFast":[13,17],"networks.":[14],"We":[15],"adopt":[16],"Networks":[18],"to":[19,48,61,69,96],"extract":[20,97],"slow-changing":[21],"spatial":[22,32,98],"semantic":[23],"information":[24,37],"of":[25,81,105,113],"a":[26,63],"single":[27],"target":[28],"entity":[29],"in":[30,38,73],"the":[31,39,50,66,70,74,106,123,130],"domain":[33],"fast-changing":[35],"motion":[36],"temporal":[40,100],"domain.":[41],"Since":[42],"is":[46],"able":[47],"learn":[49,62],"class":[51],"difference":[52],"between":[53],"actions,":[55],"utilize":[57],"mapping":[64],"from":[65],"original":[67],"video":[68],"compact":[71],"features":[72],"embedding":[75],"space.":[76],"The":[77],"proposed":[78,131],"network":[79,112],"consists":[80],"three":[82],"main":[83],"parts:":[84],"1)":[85],"two":[86,107],"branches":[87],"independently":[88],"operating":[89],"at":[90],"low":[91],"and":[92,99,117,142],"high":[93,146],"frame":[94],"rates":[95],"features;":[101],"2)":[102],"feature":[103],"fusion":[104],"branches;":[108],"3)":[109],"joint":[110],"training":[111],"classification":[118],"loss.":[119],"Experimental":[120],"results":[121],"on":[122],"KTH":[124],"dataset":[127],"demonstrate":[128],"that":[129],"method":[132],"achieves":[133],"faster":[134],"runtime":[135],"less":[137],"model":[138],"size":[139],"than":[140],"C3D":[141],"R3D,":[143],"while":[144],"ensuring":[145],"accuracy.":[147]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4206199457","counts_by_year":[{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":1}],"updated_date":"2024-12-09T09:03:43.490785","created_date":"2022-01-25"}