{"id":"https://openalex.org/W4206346416","doi":"https://doi.org/10.1109/vcip53242.2021.9675340","title":"Action Recognition Improved by Correlations and Attention of Subjects and Scene","display_name":"Action Recognition Improved by Correlations and Attention of Subjects and Scene","publication_year":2021,"publication_date":"2021-12-05","ids":{"openalex":"https://openalex.org/W4206346416","doi":"https://doi.org/10.1109/vcip53242.2021.9675340"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/vcip53242.2021.9675340","pdf_url":null,"source":{"id":"https://openalex.org/S4363608378","display_name":"2021 International Conference on Visual Communications and Image Processing (VCIP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5019938778","display_name":"Manh-Hung Ha","orcid":"https://orcid.org/0000-0002-5782-6829"},"institutions":[{"id":"https://openalex.org/I148099254","display_name":"National Chung Cheng University","ror":"https://ror.org/0028v3876","country_code":"TW","type":"education","lineage":["https://openalex.org/I148099254"]}],"countries":["TW"],"is_corresponding":false,"raw_author_name":"Manh-Hung Ha","raw_affiliation_strings":["National Chung Cheng University, Chiayi, Taiwan"],"affiliations":[{"raw_affiliation_string":"National Chung Cheng University, Chiayi, Taiwan","institution_ids":["https://openalex.org/I148099254"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5089896362","display_name":"Oscal Tzyh-Chiang Chen","orcid":"https://orcid.org/0000-0002-5172-9913"},"institutions":[{"id":"https://openalex.org/I148099254","display_name":"National Chung Cheng University","ror":"https://ror.org/0028v3876","country_code":"TW","type":"education","lineage":["https://openalex.org/I148099254"]}],"countries":["TW"],"is_corresponding":false,"raw_author_name":"Oscal Tzyh-Chiang Chen","raw_affiliation_strings":["National Chung Cheng University, Chiayi, Taiwan"],"affiliations":[{"raw_affiliation_string":"National Chung Cheng University, Chiayi, Taiwan","institution_ids":["https://openalex.org/I148099254"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.554,"has_fulltext":false,"cited_by_count":9,"citation_normalized_percentile":{"value":0.738958,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":86,"max":87},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12740","display_name":"Gait Recognition and Analysis","score":0.9956,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/action-recognition","display_name":"Action Recognition","score":0.6890854}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7051047},{"id":"https://openalex.org/C2987834672","wikidata":"https://www.wikidata.org/wiki/Q4677630","display_name":"Action recognition","level":3,"score":0.6890854},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.6871762},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6271878},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.60605204},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.58949},{"id":"https://openalex.org/C118505674","wikidata":"https://www.wikidata.org/wiki/Q42586063","display_name":"Encoder","level":2,"score":0.48731098},{"id":"https://openalex.org/C66322947","wikidata":"https://www.wikidata.org/wiki/Q11658","display_name":"Transformer","level":3,"score":0.4691851},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.41661492},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.37882864},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.05961618},{"id":"https://openalex.org/C165801399","wikidata":"https://www.wikidata.org/wiki/Q25428","display_name":"Voltage","level":2,"score":0.0},{"id":"https://openalex.org/C2777212361","wikidata":"https://www.wikidata.org/wiki/Q5127848","display_name":"Class (philosophy)","level":2,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0},{"id":"https://openalex.org/C119599485","wikidata":"https://www.wikidata.org/wiki/Q43035","display_name":"Electrical engineering","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/vcip53242.2021.9675340","pdf_url":null,"source":{"id":"https://openalex.org/S4363608378","display_name":"2021 International Conference on Visual Communications and Image Processing (VCIP)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Peace, justice, and strong institutions","score":0.69,"id":"https://metadata.un.org/sdg/16"}],"grants":[{"funder":"https://openalex.org/F4320309618","funder_display_name":"Ministry of Science and Technology","award_id":"MOST 109-2622-E-194-004,MOST 109-2622-E-194-003"}],"datasets":[],"versions":[],"referenced_works_count":17,"referenced_works":["https://openalex.org/W2775727048","https://openalex.org/W2779380177","https://openalex.org/W2796633859","https://openalex.org/W2804078698","https://openalex.org/W2883275382","https://openalex.org/W2963091558","https://openalex.org/W2963150697","https://openalex.org/W2963524571","https://openalex.org/W2964080601","https://openalex.org/W2971866817","https://openalex.org/W2972006294","https://openalex.org/W2981311757","https://openalex.org/W3094502228","https://openalex.org/W3119731383","https://openalex.org/W3129045008","https://openalex.org/W4323654151","https://openalex.org/W4385245566"],"related_works":["https://openalex.org/W4390516098","https://openalex.org/W4361193049","https://openalex.org/W4293226380","https://openalex.org/W4283332100","https://openalex.org/W4205302943","https://openalex.org/W2561132942","https://openalex.org/W2551337514","https://openalex.org/W2384362569","https://openalex.org/W2181948922","https://openalex.org/W2119949815"],"abstract_inverted_index":{"Comprehensive":[0],"activity":[1],"understanding":[2],"of":[3,32,40,57,124,132],"multiple":[4,153],"subjects":[5,23],"in":[6,90,129],"a":[7],"video":[8],"requires":[9],"subject":[10],"detection,":[11],"action":[12,30,100,148],"identification,":[13],"and":[14,24,38,44,75,92,104,127,136],"behavior":[15],"interpretation":[16],"as":[17,19],"well":[18],"the":[20,29,36,41,48,87,117,121,130],"interactions":[21,39],"among":[22],"background.":[25],"This":[26],"work":[27],"develops":[28],"recognition":[31,109],"subject(s)":[33,45],"based":[34],"on":[35,102],"correlations":[37],"whole":[42],"scene":[43],"by":[46],"using":[47],"Deep":[49],"Neural":[50,60],"Network":[51,61],"(DNN).":[52],"The":[53,112],"proposed":[54,118],"DNN":[55,119,141],"consists":[56],"3D":[58],"Convolutional":[59],"(CNN),":[62],"Spatial":[63],"Attention":[64],"(SA)":[65],"generation":[66],"layer,":[67,71],"mapping":[68],"convolutional":[69],"fused-depth":[70],"Transformer":[72],"Encoder":[73],"(TE),":[74],"two":[76],"fully":[77],"connected":[78],"layers":[79],"with":[80],"late":[81],"fusion":[82],"for":[83,107,146],"final":[84],"classification.":[85],"Especially,":[86],"attention":[88],"mechanisms":[89],"SA":[91],"TE":[93],"are":[94],"implemented":[95],"to":[96],"find":[97],"out":[98],"meaningful":[99],"information":[101],"spatial":[103],"temporal":[105],"domains":[106],"enhancing":[108],"performance,":[110],"respectively.":[111,138],"experimental":[113],"results":[114],"reveal":[115],"that":[116],"shows":[120],"superior":[122],"accuracies":[123],"97.8%,":[125],"98.4%":[126],"85.6%":[128],"datasets":[131],"traffic":[133],"police,":[134],"UCF101-24":[135],"JHMDB-21,":[137],"Therefore,":[139],"our":[140],"is":[142],"an":[143],"outstanding":[144],"classifier":[145],"various":[147],"recognitions":[149],"involving":[150],"one":[151],"or":[152],"subjects.":[154]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4206346416","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":4},{"year":2022,"cited_by_count":3}],"updated_date":"2024-12-09T09:01:48.918956","created_date":"2022-01-26"}