{"id":"https://openalex.org/W3000821456","doi":"https://doi.org/10.1109/vcip47243.2019.8965661","title":"Privacy-Preserving Fall Detection with Deep Learning on mmWave Radar Signal","display_name":"Privacy-Preserving Fall Detection with Deep Learning on mmWave Radar Signal","publication_year":2019,"publication_date":"2019-12-01","ids":{"openalex":"https://openalex.org/W3000821456","doi":"https://doi.org/10.1109/vcip47243.2019.8965661","mag":"3000821456"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/vcip47243.2019.8965661","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5004587298","display_name":"Yangfan Sun","orcid":"https://orcid.org/0000-0001-6735-6069"},"institutions":[{"id":"https://openalex.org/I75421653","display_name":"University of Missouri\u2013Kansas City","ror":"https://ror.org/01w0d5g70","country_code":"US","type":"funder","lineage":["https://openalex.org/I75421653"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Yangfan Sun","raw_affiliation_strings":["Department of Computer Science and Electrical Engineering, University of Missouri, Kansas City, USA"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Electrical Engineering, University of Missouri, Kansas City, USA","institution_ids":["https://openalex.org/I75421653"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5086507196","display_name":"Renlong Hang","orcid":"https://orcid.org/0000-0001-6046-3689"},"institutions":[{"id":"https://openalex.org/I75421653","display_name":"University of Missouri\u2013Kansas City","ror":"https://ror.org/01w0d5g70","country_code":"US","type":"funder","lineage":["https://openalex.org/I75421653"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Renlong Hang","raw_affiliation_strings":["Department of Computer Science and Electrical Engineering, University of Missouri, Kansas City, USA"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Electrical Engineering, University of Missouri, Kansas City, USA","institution_ids":["https://openalex.org/I75421653"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100380625","display_name":"Zhu Li","orcid":"https://orcid.org/0000-0002-8246-177X"},"institutions":[{"id":"https://openalex.org/I75421653","display_name":"University of Missouri\u2013Kansas City","ror":"https://ror.org/01w0d5g70","country_code":"US","type":"funder","lineage":["https://openalex.org/I75421653"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Zhu Li","raw_affiliation_strings":["Department of Computer Science and Electrical Engineering, University of Missouri, Kansas City, USA"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Electrical Engineering, University of Missouri, Kansas City, USA","institution_ids":["https://openalex.org/I75421653"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5070389484","display_name":"Mouqing Jin","orcid":null},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Mouqing Jin","raw_affiliation_strings":["Ric Semiconductor, LLC, Texas, USA"],"affiliations":[{"raw_affiliation_string":"Ric Semiconductor, LLC, Texas, USA","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5060717631","display_name":"Kelvin Xu","orcid":null},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Kelvin Xu","raw_affiliation_strings":["Ric Semiconductor, LLC, Texas, USA"],"affiliations":[{"raw_affiliation_string":"Ric Semiconductor, LLC, Texas, USA","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":4.86,"has_fulltext":false,"cited_by_count":29,"citation_normalized_percentile":{"value":0.961089,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12740","display_name":"Gait Recognition and Analysis","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12740","display_name":"Gait Recognition and Analysis","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11038","display_name":"Advanced SAR Imaging Techniques","score":0.9963,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10326","display_name":"Indoor and Outdoor Localization Technologies","score":0.9922,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/softmax-function","display_name":"Softmax function","score":0.7890923}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.83566916},{"id":"https://openalex.org/C188441871","wikidata":"https://www.wikidata.org/wiki/Q7554146","display_name":"Softmax function","level":3,"score":0.7890923},{"id":"https://openalex.org/C554190296","wikidata":"https://www.wikidata.org/wiki/Q47528","display_name":"Radar","level":2,"score":0.69817835},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.63109285},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.6131734},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.5136902},{"id":"https://openalex.org/C150594956","wikidata":"https://www.wikidata.org/wiki/Q1334829","display_name":"Wearable computer","level":2,"score":0.49180463},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.41260296},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.36294234},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.34147036},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.16856432},{"id":"https://openalex.org/C149635348","wikidata":"https://www.wikidata.org/wiki/Q193040","display_name":"Embedded system","level":1,"score":0.1195645}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/vcip47243.2019.8965661","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Peace, justice, and strong institutions","score":0.47,"id":"https://metadata.un.org/sdg/16"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":10,"referenced_works":["https://openalex.org/W2016549506","https://openalex.org/W2082361295","https://openalex.org/W2091566335","https://openalex.org/W2116261113","https://openalex.org/W2128814754","https://openalex.org/W2151660514","https://openalex.org/W2170588123","https://openalex.org/W2783857023","https://openalex.org/W2997932427","https://openalex.org/W584600887"],"related_works":["https://openalex.org/W4323060069","https://openalex.org/W4312417841","https://openalex.org/W4287591324","https://openalex.org/W4226493464","https://openalex.org/W3193565141","https://openalex.org/W3167935049","https://openalex.org/W3133861977","https://openalex.org/W3107204728","https://openalex.org/W3029198973","https://openalex.org/W2899027234"],"abstract_inverted_index":{"Fall":[0],"is":[1,134,153],"one":[2,142],"of":[3,31,48,84,89,167,179],"the":[4,46,49,55,65,71,82,87,103,111,118,124,127,131,146,149,165,177,198,213,227,237],"main":[5],"reasons":[6],"for":[7,122,138,159],"body":[8],"injuries":[9],"among":[10],"seniors.":[11],"Traditional":[12],"fall":[13,42],"detection":[14,43,215],"methods":[15],"are":[16,61,240],"mainly":[17],"achieved":[18],"by":[19,143],"wearable":[20],"and":[21,73,197,209,236],"non-wearable":[22],"techniques,":[23],"which":[24,76],"may":[25],"cause":[26],"skin":[27],"discomfort":[28],"or":[29],"invasion":[30],"privacy":[32],"to":[33,53,63,80,109,184,194,230],"users.":[34],"In":[35,223],"this":[36],"paper,":[37],"we":[38,101,171,225],"propose":[39],"an":[40],"automatic":[41],"method":[44,229],"with":[45,86,95,176,217],"assist":[47,178],"mmWave":[50],"radar":[51,59,104,120,174,181],"signal":[52,121],"solve":[54],"aforementioned":[56],"issues.":[57],"The":[58,188],"devices":[60],"capable":[62],"record":[64],"reflection":[66,113],"from":[67,117,148],"objects":[68],"in":[69,126,155],"both":[70],"spatial":[72,128],"temporal":[74],"domain,":[75],"can":[77,211],"be":[78],"used":[79,200],"depict":[81],"activities":[83,234],"users":[85],"support":[88],"a":[90,156,173],"recurrent":[91],"neural":[92,203],"network":[93,204],"(RNN)":[94],"long-short-term":[96],"memory":[97],"(LSTM)":[98],"units.":[99],"First,":[100],"employ":[102],"low-dimension":[105],"embedding":[106],"(RLDE)":[107],"algorithm":[108],"preprocess":[110],"Range-angle":[112],"heatmap":[114],"sequence":[115,133],"converted":[116],"raw":[119],"reducing":[123],"redundancy":[125],"domain.":[129],"Then,":[130],"processed":[132],"split":[135],"into":[136],"frames":[137],"inputting":[139],"LSTM":[140,151,195,210],"units":[141],"one.":[144],"Eventually,":[145],"output":[147],"last":[150],"unit":[152],"fed":[154],"Softmax":[157],"layer":[158],"classifying":[160],"different":[161],"activities.":[162],"To":[163],"validate":[164],"effectiveness":[166],"our":[168],"proposed":[169,228],"method,":[170],"construct":[172],"dataset":[175],"market":[180],"module":[182],"devices,":[183],"implement":[185],"several":[186],"experiments.":[187],"experimental":[189],"results":[190,216],"demonstrate":[191],"that,":[192],"compared":[193],"only":[196],"widely":[199],"3-D":[201],"convolutional":[202],"(3-D":[205],"CNN),":[206],"combining":[207],"RLDE":[208],"achieve":[212],"best":[214],"much":[218],"less":[219],"computational":[220],"time":[221],"consumption.":[222],"addition,":[224],"extend":[226],"classify":[231],"multiple":[232],"human":[233],"simultaneously":[235],"satisfied":[238],"performances":[239],"observed.":[241]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3000821456","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":8},{"year":2023,"cited_by_count":6},{"year":2022,"cited_by_count":4},{"year":2021,"cited_by_count":7},{"year":2020,"cited_by_count":3}],"updated_date":"2025-04-19T04:48:18.226160","created_date":"2020-01-30"}