{"id":"https://openalex.org/W2579544764","doi":"https://doi.org/10.1109/vcip.2016.7805431","title":"Stereoscopic images quality assessment based on deep learning","display_name":"Stereoscopic images quality assessment based on deep learning","publication_year":2016,"publication_date":"2016-11-01","ids":{"openalex":"https://openalex.org/W2579544764","doi":"https://doi.org/10.1109/vcip.2016.7805431","mag":"2579544764"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/vcip.2016.7805431","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100437036","display_name":"Kai Wang","orcid":"https://orcid.org/0000-0002-6170-4744"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"education","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Kai Wang","raw_affiliation_strings":["Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University","Shanghai Key Laboratory of Digital Media Processing and Transmissions, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Shanghai Key Laboratory of Digital Media Processing and Transmissions, Shanghai, China","institution_ids":[]},{"raw_affiliation_string":"Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University","institution_ids":["https://openalex.org/I183067930"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100781212","display_name":"Jun Zhou","orcid":"https://orcid.org/0000-0001-5822-8233"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"education","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jun Zhou","raw_affiliation_strings":["Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University","Shanghai Key Laboratory of Digital Media Processing and Transmissions, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Shanghai Key Laboratory of Digital Media Processing and Transmissions, Shanghai, China","institution_ids":[]},{"raw_affiliation_string":"Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University","institution_ids":["https://openalex.org/I183067930"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101683584","display_name":"Ning Liu","orcid":"https://orcid.org/0000-0001-7475-9739"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"education","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Ning Liu","raw_affiliation_strings":["Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University","Shanghai Key Laboratory of Digital Media Processing and Transmissions, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Shanghai Key Laboratory of Digital Media Processing and Transmissions, Shanghai, China","institution_ids":[]},{"raw_affiliation_string":"Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University","institution_ids":["https://openalex.org/I183067930"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5028704757","display_name":"Xiao Gu","orcid":"https://orcid.org/0000-0002-3015-5818"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"education","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiao Gu","raw_affiliation_strings":["Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University","Shanghai Key Laboratory of Digital Media Processing and Transmissions, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Shanghai Key Laboratory of Digital Media Processing and Transmissions, Shanghai, China","institution_ids":[]},{"raw_affiliation_string":"Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University","institution_ids":["https://openalex.org/I183067930"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.248,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":3,"citation_normalized_percentile":{"value":0.373289,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":77,"max":79},"biblio":{"volume":"26","issue":null,"first_page":"1","last_page":"4"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11165","display_name":"Image Quality Assessment in Multimedia Content","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11165","display_name":"Image Quality Assessment in Multimedia Content","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11105","display_name":"Single Image Super-Resolution Techniques","score":0.9956,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11605","display_name":"Computational Modeling of Visual Saliency Detection","score":0.9936,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/pooling","display_name":"Pooling","score":0.7779251},{"id":"https://openalex.org/keywords/image-quality-assessment","display_name":"Image Quality Assessment","score":0.601232},{"id":"https://openalex.org/keywords/stereoscopic-images","display_name":"Stereoscopic Images","score":0.592718},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.53797024},{"id":"https://openalex.org/keywords/image-segmentation","display_name":"Image Segmentation","score":0.527689},{"id":"https://openalex.org/keywords/perceptual-quality","display_name":"Perceptual Quality","score":0.516006},{"id":"https://openalex.org/keywords/video-object-segmentation","display_name":"Video Object Segmentation","score":0.502476},{"id":"https://openalex.org/keywords/quality-score","display_name":"Quality Score","score":0.4515596}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.82600534},{"id":"https://openalex.org/C70437156","wikidata":"https://www.wikidata.org/wiki/Q7228652","display_name":"Pooling","level":2,"score":0.7779251},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7235907},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.6894567},{"id":"https://openalex.org/C126057942","wikidata":"https://www.wikidata.org/wiki/Q35158","display_name":"Stereoscopy","level":2,"score":0.6626743},{"id":"https://openalex.org/C9652623","wikidata":"https://www.wikidata.org/wiki/Q190109","display_name":"Field (mathematics)","level":2,"score":0.55630165},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.53797024},{"id":"https://openalex.org/C140745168","wikidata":"https://www.wikidata.org/wiki/Q1210082","display_name":"Tree traversal","level":2,"score":0.5162294},{"id":"https://openalex.org/C2779530757","wikidata":"https://www.wikidata.org/wiki/Q1207505","display_name":"Quality (philosophy)","level":2,"score":0.51457804},{"id":"https://openalex.org/C55020928","wikidata":"https://www.wikidata.org/wiki/Q3813865","display_name":"Image quality","level":3,"score":0.5063554},{"id":"https://openalex.org/C2779333187","wikidata":"https://www.wikidata.org/wiki/Q3132648","display_name":"Quality of experience","level":3,"score":0.4872657},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.47631323},{"id":"https://openalex.org/C2779346075","wikidata":"https://www.wikidata.org/wiki/Q7268763","display_name":"Quality Score","level":3,"score":0.4515596},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.4282236},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.40322718},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.4021135},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.38499072},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.35607266},{"id":"https://openalex.org/C176217482","wikidata":"https://www.wikidata.org/wiki/Q860554","display_name":"Metric (unit)","level":2,"score":0.1375409},{"id":"https://openalex.org/C5119721","wikidata":"https://www.wikidata.org/wiki/Q220501","display_name":"Quality of service","level":2,"score":0.09557173},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.08584368},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.06871402},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C21547014","wikidata":"https://www.wikidata.org/wiki/Q1423657","display_name":"Operations management","level":1,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/vcip.2016.7805431","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":11,"referenced_works":["https://openalex.org/W1509997443","https://openalex.org/W1981076008","https://openalex.org/W2083704334","https://openalex.org/W2091260665","https://openalex.org/W2091408824","https://openalex.org/W2107995569","https://openalex.org/W2130325614","https://openalex.org/W2133257461","https://openalex.org/W2136922672","https://openalex.org/W2162931300","https://openalex.org/W2170947705"],"related_works":["https://openalex.org/W2896214331","https://openalex.org/W2548277527","https://openalex.org/W2506963199","https://openalex.org/W2289086982","https://openalex.org/W2136735429","https://openalex.org/W2035833757","https://openalex.org/W1997117005","https://openalex.org/W170547082","https://openalex.org/W1585338487","https://openalex.org/W1562127107"],"abstract_inverted_index":{"With":[0],"the":[1,33,41,50,62,91,139],"popularity":[2],"of":[3,23,32,49,68],"stereoscopic":[4],"3D":[5,157],"(S3D)":[6],"images":[7,117],"and":[8,115],"videos,":[9],"many":[10],"advanced":[11],"objective":[12,65],"quality":[13,66,79,141],"assessment":[14,80,142],"methods":[15],"have":[16],"been":[17,47],"proposed":[18],"to":[19,36,108,132],"evaluate":[20],"viewers'":[21],"Quality":[22],"Experience":[24],"(QoE).":[25],"Among":[26],"them,":[27],"most":[28],"algorithms":[29],"take":[30],"advantages":[31],"disparity":[34],"maps":[35,111],"extract":[37,109],"useful":[38],"features.":[39],"On":[40],"other":[42],"hand,":[43],"deep":[44,86],"learning":[45,106],"has":[46],"one":[48],"hottest":[51],"research":[52],"topics":[53],"during":[54],"these":[55],"years,":[56],"but":[57],"limited":[58],"efforts":[59],"focused":[60],"on":[61,85,125,156],"field":[63],"in":[64],"evaluation":[67],"S3D":[69,77,150],"images.":[70],"In":[71,88],"this":[72,89],"paper,":[73],"we":[74],"propose":[75],"a":[76],"image":[78],"(S3D":[81],"IQA)":[82],"method":[83,152],"based":[84,124],"learning.":[87],"method,":[90],"Convolutional":[92],"Restricted":[93],"Boltzmann":[94],"Machines":[95],"(CRBM)":[96],"combined":[97],"with":[98],"Factored":[99],"Third-Order":[100],"RBM":[101],"(FTO-RBM)":[102],"is":[103,129],"considered":[104],"as":[105],"model":[107],"feature":[110,135],"from":[112],"pre-processed":[113],"left":[114],"right":[116],"automatically.":[118],"Then":[119],"an":[120],"improved":[121],"traversal":[122],"algorithm":[123],"two":[126],"pooling":[127],"strategies":[128],"put":[130],"forward":[131],"optimize":[133],"extracted":[134],"maps,":[136],"which":[137],"improves":[138],"final":[140],"performance":[143,155],"significantly.":[144],"Experimental":[145],"results":[146],"show":[147],"that":[148],"our":[149],"IQA":[151],"achieves":[153],"good":[154],"databases":[158],"tested.":[159]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2579544764","counts_by_year":[{"year":2018,"cited_by_count":1},{"year":2017,"cited_by_count":2}],"updated_date":"2024-11-18T16:56:20.213798","created_date":"2017-01-26"}