{"id":"https://openalex.org/W1997458026","doi":"https://doi.org/10.1109/vcip.2013.6706388","title":"A novel method for stereo matching using Gabor Feature Image and Confidence Mask","display_name":"A novel method for stereo matching using Gabor Feature Image and Confidence Mask","publication_year":2013,"publication_date":"2013-11-01","ids":{"openalex":"https://openalex.org/W1997458026","doi":"https://doi.org/10.1109/vcip.2013.6706388","mag":"1997458026"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/vcip.2013.6706388","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101463841","display_name":"Haixu Liu","orcid":"https://orcid.org/0009-0007-8115-0826"},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"education","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Haixu Liu","raw_affiliation_strings":["Sch. of Inf. & Commun. Eng., Beijing Univ. of Posts & Telecommun., Beijing, , China"],"affiliations":[{"raw_affiliation_string":"Sch. of Inf. & Commun. Eng., Beijing Univ. of Posts & Telecommun., Beijing, , China","institution_ids":["https://openalex.org/I139759216"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100355692","display_name":"Yang Liu","orcid":"https://orcid.org/0000-0001-7300-9215"},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"education","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yang Liu","raw_affiliation_strings":["Sch. of Inf. & Commun. Eng., Beijing Univ. of Posts & Telecommun., Beijing, , China"],"affiliations":[{"raw_affiliation_string":"Sch. of Inf. & Commun. Eng., Beijing Univ. of Posts & Telecommun., Beijing, , China","institution_ids":["https://openalex.org/I139759216"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5103179681","display_name":"Shuxin Ouyang","orcid":"https://orcid.org/0000-0002-3087-4038"},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"education","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shuxin OuYang","raw_affiliation_strings":["Sch. of Inf. & Commun. Eng., Beijing Univ. of Posts & Telecommun., Beijing, , China"],"affiliations":[{"raw_affiliation_string":"Sch. of Inf. & Commun. Eng., Beijing Univ. of Posts & Telecommun., Beijing, , China","institution_ids":["https://openalex.org/I139759216"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100731335","display_name":"Chenyu Liu","orcid":"https://orcid.org/0000-0002-3654-1824"},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"education","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chenyu Liu","raw_affiliation_strings":["Sch. of Inf. & Commun. Eng., Beijing Univ. of Posts & Telecommun., Beijing, , China"],"affiliations":[{"raw_affiliation_string":"Sch. of Inf. & Commun. Eng., Beijing Univ. of Posts & Telecommun., Beijing, , China","institution_ids":["https://openalex.org/I139759216"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5111456790","display_name":"Xueming Li","orcid":null},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"education","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xueming Li","raw_affiliation_strings":["Sch. of Digital Media & Design Arts, Beijing Univ. of Posts & Telecommun., Beijing, China"],"affiliations":[{"raw_affiliation_string":"Sch. of Digital Media & Design Arts, Beijing Univ. of Posts & Telecommun., Beijing, China","institution_ids":["https://openalex.org/I139759216"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.327,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":3,"citation_normalized_percentile":{"value":0.467487,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":76,"max":78},"biblio":{"volume":"93","issue":null,"first_page":"1","last_page":"6"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10531","display_name":"Stereo Vision and Depth Estimation","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10531","display_name":"Stereo Vision and Depth Estimation","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11105","display_name":"Single Image Super-Resolution Techniques","score":0.9963,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Image Feature Retrieval and Recognition Techniques","score":0.9955,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.62379414},{"id":"https://openalex.org/keywords/feature-matching","display_name":"Feature Matching","score":0.617363},{"id":"https://openalex.org/keywords/depth-estimation","display_name":"Depth Estimation","score":0.526125},{"id":"https://openalex.org/keywords/sparse-representations","display_name":"Sparse Representations","score":0.512727},{"id":"https://openalex.org/keywords/image-retrieval","display_name":"Image Retrieval","score":0.504676},{"id":"https://openalex.org/keywords/monocular-depth-estimation","display_name":"Monocular Depth Estimation","score":0.502001}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.76181114},{"id":"https://openalex.org/C165064840","wikidata":"https://www.wikidata.org/wiki/Q1321061","display_name":"Matching (statistics)","level":2,"score":0.64990044},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6325533},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.62379414},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.5946965},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.5942595},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5481416},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.4876443},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.47335625},{"id":"https://openalex.org/C20556612","wikidata":"https://www.wikidata.org/wiki/Q4469374","display_name":"Volume (thermodynamics)","level":2,"score":0.452767},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.42004657},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.28731924},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.061925143},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/vcip.2013.6706388","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":13,"referenced_works":["https://openalex.org/W1674866864","https://openalex.org/W168460524","https://openalex.org/W1781337833","https://openalex.org/W1968799614","https://openalex.org/W1998823483","https://openalex.org/W2097368509","https://openalex.org/W2102372511","https://openalex.org/W2104974755","https://openalex.org/W2112421488","https://openalex.org/W2123782500","https://openalex.org/W2128357735","https://openalex.org/W2148534289","https://openalex.org/W2160956336"],"related_works":["https://openalex.org/W4390494008","https://openalex.org/W4285411112","https://openalex.org/W3135697610","https://openalex.org/W2922442631","https://openalex.org/W2171299904","https://openalex.org/W2168523118","https://openalex.org/W2085033728","https://openalex.org/W2073639911","https://openalex.org/W2053596378","https://openalex.org/W1647606319"],"abstract_inverted_index":{"In":[0],"this":[1],"paper,":[2],"we":[3,53],"present":[4],"a":[5,55,64],"novel":[6],"local-based":[7,17,129],"algorithm":[8,102],"for":[9,62],"stereo":[10,130],"matching":[11,67,76,131],"using":[12,88],"Gabor-Feature-Image":[13,61],"and":[14,94,110,119],"Confidence-Mask.":[15],"Various":[16],"schemes":[18],"have":[19],"been":[20],"proposed":[21,101],"in":[22,71],"recent":[23],"years,":[24],"most":[25],"of":[26,106],"them":[27],"mainly":[28],"use":[29],"color":[30,42],"difference":[31],"as":[32],"evaluation":[33,121],"criterion":[34],"when":[35],"constructing":[36],"the":[37,75,80,96],"initial":[38],"cost":[39,57,68],"volume,":[40],"however,":[41],"channel":[43],"is":[44,90,125],"highly":[45],"sensitive":[46],"to":[47,73,92,127],"noise,":[48],"illumination":[49],"changes,":[50],"etc.":[51],"Therefore,":[52],"develop":[54],"new":[56],"function":[58],"based":[59],"on":[60,113],"obtaining":[63],"more":[65],"accurate":[66],"volume.":[69],"Furthermore,":[70],"order":[72],"eliminate":[74],"ambiguities":[77],"brought":[78],"by":[79],"winnertakes-all":[81],"method,":[82],"an":[83],"effective":[84],"disparity":[85],"refinement":[86],"strategy":[87],"Confidence-Mask":[89],"implemented":[91],"select":[93],"refine":[95],"less":[97],"reliable":[98],"pixels.":[99],"The":[100],"ranks":[103],"23th":[104],"out":[105],"over":[107],"150":[108],"(global-based":[109],"local-based)":[111],"methods":[112],"Middlebury":[114],"data":[115],"sets,":[116],"both":[117],"quantitative":[118],"qualitative":[120],"show":[122],"that":[123],"it":[124],"comparable":[126],"state-of-the-art":[128],"algorithms.":[132]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1997458026","counts_by_year":[{"year":2022,"cited_by_count":1},{"year":2015,"cited_by_count":1},{"year":2014,"cited_by_count":1}],"updated_date":"2024-11-23T14:01:36.099198","created_date":"2016-06-24"}