{"id":"https://openalex.org/W1970115793","doi":"https://doi.org/10.1109/ukci.2013.6651321","title":"Random projections versus random selection of features for classification of high dimensional data","display_name":"Random projections versus random selection of features for classification of high dimensional data","publication_year":2013,"publication_date":"2013-09-01","ids":{"openalex":"https://openalex.org/W1970115793","doi":"https://doi.org/10.1109/ukci.2013.6651321","mag":"1970115793"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ukci.2013.6651321","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5032941667","display_name":"Sachin Mylavarapu","orcid":null},"institutions":[{"id":"https://openalex.org/I79619799","display_name":"University of Birmingham","ror":"https://ror.org/03angcq70","country_code":"GB","type":"education","lineage":["https://openalex.org/I79619799"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Sachin Mylavarapu","raw_affiliation_strings":["School of Computer Science, University of Birmingham, Birmingham, UK"],"affiliations":[{"raw_affiliation_string":"School of Computer Science, University of Birmingham, Birmingham, UK","institution_ids":["https://openalex.org/I79619799"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5001135130","display_name":"Ata Kab\u00e1n","orcid":"https://orcid.org/0000-0003-3733-7064"},"institutions":[{"id":"https://openalex.org/I79619799","display_name":"University of Birmingham","ror":"https://ror.org/03angcq70","country_code":"GB","type":"education","lineage":["https://openalex.org/I79619799"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Ata Kaban","raw_affiliation_strings":["School of Computer Science, University of Birmingham, Birmingham, UK"],"affiliations":[{"raw_affiliation_string":"School of Computer Science, University of Birmingham, Birmingham, UK","institution_ids":["https://openalex.org/I79619799"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.654,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":11,"citation_normalized_percentile":{"value":0.8504,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":86,"max":87},"biblio":{"volume":null,"issue":null,"first_page":"305","last_page":"312"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9956,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9956,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11901","display_name":"Bayesian Methods and Mixture Models","score":0.9948,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10136","display_name":"Statistical Methods and Inference","score":0.9905,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/random-projection","display_name":"Random projection","score":0.54316854},{"id":"https://openalex.org/keywords/clustering-high-dimensional-data","display_name":"Clustering high-dimensional data","score":0.474757}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6378659},{"id":"https://openalex.org/C169258074","wikidata":"https://www.wikidata.org/wiki/Q245748","display_name":"Random forest","level":2,"score":0.5891022},{"id":"https://openalex.org/C111030470","wikidata":"https://www.wikidata.org/wiki/Q1430460","display_name":"Curse of dimensionality","level":2,"score":0.5801518},{"id":"https://openalex.org/C32834561","wikidata":"https://www.wikidata.org/wiki/Q660730","display_name":"Subspace topology","level":2,"score":0.56094754},{"id":"https://openalex.org/C2777036070","wikidata":"https://www.wikidata.org/wiki/Q18393452","display_name":"Random projection","level":2,"score":0.54316854},{"id":"https://openalex.org/C2777212361","wikidata":"https://www.wikidata.org/wiki/Q5127848","display_name":"Class (philosophy)","level":2,"score":0.5010402},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4986496},{"id":"https://openalex.org/C81917197","wikidata":"https://www.wikidata.org/wiki/Q628760","display_name":"Selection (genetic algorithm)","level":2,"score":0.49780202},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.48579288},{"id":"https://openalex.org/C184509293","wikidata":"https://www.wikidata.org/wiki/Q5136711","display_name":"Clustering high-dimensional data","level":3,"score":0.474757},{"id":"https://openalex.org/C173801870","wikidata":"https://www.wikidata.org/wiki/Q201413","display_name":"Heuristic","level":2,"score":0.4594347},{"id":"https://openalex.org/C148483581","wikidata":"https://www.wikidata.org/wiki/Q446488","display_name":"Feature selection","level":2,"score":0.43663824},{"id":"https://openalex.org/C28719098","wikidata":"https://www.wikidata.org/wiki/Q44946","display_name":"Point (geometry)","level":2,"score":0.43140733},{"id":"https://openalex.org/C130402806","wikidata":"https://www.wikidata.org/wiki/Q5361768","display_name":"Random field","level":2,"score":0.4191935},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.40402535},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.39272344},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.3684927},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.28510034},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.22629136},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.1478169},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/ukci.2013.6651321","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":29,"referenced_works":["https://openalex.org/W101693742","https://openalex.org/W1486890033","https://openalex.org/W1531259569","https://openalex.org/W1554944419","https://openalex.org/W1727290854","https://openalex.org/W1981611034","https://openalex.org/W1990378711","https://openalex.org/W1999772635","https://openalex.org/W2024050645","https://openalex.org/W2089468765","https://openalex.org/W2089497633","https://openalex.org/W2090898720","https://openalex.org/W2110518784","https://openalex.org/W2121587014","https://openalex.org/W2132433561","https://openalex.org/W2133462743","https://openalex.org/W2135508918","https://openalex.org/W2147512163","https://openalex.org/W2155461849","https://openalex.org/W2157875785","https://openalex.org/W2169446650","https://openalex.org/W2171033594","https://openalex.org/W2182620278","https://openalex.org/W232876404","https://openalex.org/W4205241946","https://openalex.org/W4237171445","https://openalex.org/W4246050513","https://openalex.org/W42998563","https://openalex.org/W72575373"],"related_works":["https://openalex.org/W4378768646","https://openalex.org/W4300663657","https://openalex.org/W4206357915","https://openalex.org/W3125756894","https://openalex.org/W3003323003","https://openalex.org/W2951250958","https://openalex.org/W2169446650","https://openalex.org/W2140439590","https://openalex.org/W2103830593","https://openalex.org/W1988922486"],"abstract_inverted_index":{"Random":[0,42],"projections":[1,43],"and":[2,9],"random":[3,58],"subspace":[4],"methods":[5],"are":[6,35,45],"very":[7],"simple":[8],"computationally":[10],"efficient":[11],"techniques":[12,34],"to":[13,27,51,64,103,111],"reduce":[14],"dimensionality":[15],"for":[16],"learning":[17],"from":[18],"high":[19,23],"dimensional":[20,24],"data.":[21],"Since":[22],"data":[25,93],"tends":[26,110],"be":[28,65],"prevalent":[29],"in":[30,73,89,116,122,133],"many":[31,134],"domains,":[32],"such":[33],"the":[36,57,119],"subject":[37],"of":[38,60,92,118],"much":[39],"recent":[40],"interest.":[41],"(RP)":[44],"motivated":[46],"by":[47],"their":[48],"proven":[49],"ability":[50],"preserve":[52],"inter-point":[53],"distances.":[54],"By":[55],"contrary,":[56],"selection":[59],"features":[61],"(RF)":[62],"appears":[63],"a":[66,81,90],"heuristic,":[67],"which":[68],"nevertheless":[69],"exhibits":[70],"good":[71,130],"performance":[72],"previous":[74],"studies.":[75],"In":[76],"this":[77],"paper":[78],"we":[79],"conduct":[80],"thorough":[82],"empirical":[83],"comparison":[84],"between":[85],"these":[86],"two":[87],"approaches":[88],"variety":[91],"sets":[94],"with":[95],"different":[96],"characteristics.":[97],"We":[98,106],"also":[99],"extend":[100],"our":[101],"study":[102],"multi-class":[104],"problems.":[105],"find":[107],"that":[108],"RP":[109],"perform":[112],"better":[113],"than":[114],"RF":[115,127],"terms":[117],"classification":[120],"accuracy":[121],"small":[123],"sample":[124],"settings,":[125],"although":[126],"is":[128],"surprisingly":[129],"as":[131],"well":[132],"cases.":[135]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1970115793","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":1},{"year":2019,"cited_by_count":2},{"year":2017,"cited_by_count":1},{"year":2016,"cited_by_count":2},{"year":2015,"cited_by_count":1},{"year":2014,"cited_by_count":1}],"updated_date":"2025-01-22T10:05:17.448287","created_date":"2016-06-24"}