{"id":"https://openalex.org/W2566229159","doi":"https://doi.org/10.1109/uemcon.2016.7777917","title":"Mobile ascertainment of smoking status through breath: A machine learning approach","display_name":"Mobile ascertainment of smoking status through breath: A machine learning approach","publication_year":2016,"publication_date":"2016-10-01","ids":{"openalex":"https://openalex.org/W2566229159","doi":"https://doi.org/10.1109/uemcon.2016.7777917","mag":"2566229159"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/uemcon.2016.7777917","pdf_url":null,"source":{"id":"https://openalex.org/S4363608506","display_name":"2022 IEEE 13th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5057539070","display_name":"Stephanie Valencia","orcid":"https://orcid.org/0000-0001-6588-9494"},"institutions":[{"id":"https://openalex.org/I32971472","display_name":"Yale University","ror":"https://ror.org/03v76x132","country_code":"US","type":"education","lineage":["https://openalex.org/I32971472"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Stephanie Valencia","raw_affiliation_strings":["Yale Child Study Center, School of Medicine, Yale University, New Haven, USA"],"affiliations":[{"raw_affiliation_string":"Yale Child Study Center, School of Medicine, Yale University, New Haven, USA","institution_ids":["https://openalex.org/I32971472"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5074074234","display_name":"Megan V. Smith","orcid":"https://orcid.org/0000-0003-2137-5146"},"institutions":[{"id":"https://openalex.org/I32971472","display_name":"Yale University","ror":"https://ror.org/03v76x132","country_code":"US","type":"education","lineage":["https://openalex.org/I32971472"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Megan V. Smith","raw_affiliation_strings":["Yale Child Study Center, School of Medicine, Yale University, New Haven, USA"],"affiliations":[{"raw_affiliation_string":"Yale Child Study Center, School of Medicine, Yale University, New Haven, USA","institution_ids":["https://openalex.org/I32971472"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5024736193","display_name":"Adham Atyabi","orcid":"https://orcid.org/0000-0003-0232-7157"},"institutions":[{"id":"https://openalex.org/I32971472","display_name":"Yale University","ror":"https://ror.org/03v76x132","country_code":"US","type":"education","lineage":["https://openalex.org/I32971472"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Adham Atyabi","raw_affiliation_strings":["Yale Child Study Center, School of Medicine, Yale University, New Haven, USA"],"affiliations":[{"raw_affiliation_string":"Yale Child Study Center, School of Medicine, Yale University, New Haven, USA","institution_ids":["https://openalex.org/I32971472"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5074602226","display_name":"Frederick Shic","orcid":"https://orcid.org/0000-0002-9040-1259"},"institutions":[{"id":"https://openalex.org/I32971472","display_name":"Yale University","ror":"https://ror.org/03v76x132","country_code":"US","type":"education","lineage":["https://openalex.org/I32971472"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Frederick Shic","raw_affiliation_strings":["Yale Child Study Center, School of Medicine, Yale University, New Haven, USA"],"affiliations":[{"raw_affiliation_string":"Yale Child Study Center, School of Medicine, Yale University, New Haven, USA","institution_ids":["https://openalex.org/I32971472"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.945,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":7,"citation_normalized_percentile":{"value":0.837037,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":83,"max":84},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"7"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10060","display_name":"Smoking Behavior and Cessation","score":0.9848,"subfield":{"id":"https://openalex.org/subfields/2737","display_name":"Physiology"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T10060","display_name":"Smoking Behavior and Cessation","score":0.9848,"subfield":{"id":"https://openalex.org/subfields/2737","display_name":"Physiology"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T11848","display_name":"Heme Oxygenase-1 and Carbon Monoxide","score":0.9835,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T11456","display_name":"Neuroscience of respiration and sleep","score":0.9808,"subfield":{"id":"https://openalex.org/subfields/2807","display_name":"Endocrine and Autonomic Systems"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.5691178},{"id":"https://openalex.org/keywords/boosting","display_name":"Boosting","score":0.56285405},{"id":"https://openalex.org/keywords/gradient-boosting","display_name":"Gradient boosting","score":0.46366787}],"concepts":[{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.6898068},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6375832},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.600729},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.5691178},{"id":"https://openalex.org/C46686674","wikidata":"https://www.wikidata.org/wiki/Q466303","display_name":"Boosting (machine learning)","level":2,"score":0.56285405},{"id":"https://openalex.org/C151956035","wikidata":"https://www.wikidata.org/wiki/Q1132755","display_name":"Logistic regression","level":2,"score":0.53647465},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5089543},{"id":"https://openalex.org/C70153297","wikidata":"https://www.wikidata.org/wiki/Q5591907","display_name":"Gradient boosting","level":3,"score":0.46366787},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.433617},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.42874697},{"id":"https://openalex.org/C169258074","wikidata":"https://www.wikidata.org/wiki/Q245748","display_name":"Random forest","level":2,"score":0.32014817},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/uemcon.2016.7777917","pdf_url":null,"source":{"id":"https://openalex.org/S4363608506","display_name":"2022 IEEE 13th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.64,"display_name":"Good health and well-being","id":"https://metadata.un.org/sdg/3"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":6,"referenced_works":["https://openalex.org/W1823840070","https://openalex.org/W1973094592","https://openalex.org/W2023320466","https://openalex.org/W2048397371","https://openalex.org/W2060523470","https://openalex.org/W2261834195"],"related_works":["https://openalex.org/W4386690025","https://openalex.org/W4310492845","https://openalex.org/W4310224730","https://openalex.org/W4224941037","https://openalex.org/W4200112873","https://openalex.org/W3204430031","https://openalex.org/W3137904399","https://openalex.org/W2967733078","https://openalex.org/W2955796858","https://openalex.org/W2885778889"],"abstract_inverted_index":{"The":[0,81,129,180,202],"ability":[1],"to":[2,56,65,162,197,218],"remotely":[3],"and":[4,76,107,144,149,152,157,171,212],"automatically":[5],"detect":[6],"whether":[7],"someone":[8],"has":[9],"been":[10],"smoking":[11,17,31,68,74],"can":[12],"develop":[13],"systems":[14],"that":[15,183,205],"promote":[16],"cessation":[18],"via":[19,33,140],"behavioral":[20],"management":[21],"or":[22],"gamification.":[23],"This":[24],"article":[25],"advances":[26],"automated":[27],"methods":[28,161],"for":[29],"ascertaining":[30],"status":[32,69],"a":[34,48,71,85],"mobile":[35],"system":[36,64],"comprised":[37],"of":[38,73,87,99,111,119,133,136,154,159,166,177,193,209],"an":[39],"environmental":[40],"carbon":[41],"monoxide":[42],"(CO)":[43],"gas":[44],"sensor":[45],"paired":[46],"with":[47],"smartphone.":[49],"We":[50],"apply":[51],"several":[52],"machine":[53],"learning":[54],"strategies":[55],"the":[57,97,109,113,123,164,178,187,194,198,219,224,230],"CO":[58],"time":[59,120],"courses":[60],"derived":[61],"from":[62,186],"our":[63],"predict":[66],"recent":[67],"in":[70,92,103],"group":[72],"(n=11)":[75],"non-smoking":[77],"(n=9)":[78],"adult":[79],"women.":[80],"study":[82],"investigates":[83],"(i)":[84,137],"range":[86],"feature":[88,101,167,225],"types":[89],"conventionally":[90],"used":[91],"smoke":[93],"analysis":[94,130],"studies,":[95],"(ii)":[96,150],"contribution":[98],"each":[100],"type":[102],"overall":[104,114,175],"prediction":[105],"accuracies":[106],"(iii)":[108],"possibility":[110],"improving":[112],"predictions":[115],"by":[116],"identifying":[117],"segments":[118,189,222],"during":[121],"which":[122],"most":[124],"informative":[125],"data":[126],"is":[127,131],"recorded.":[128],"composed":[132],"two":[134],"stages":[135],"conventional":[138],"classification":[139,200],"Logistic":[141],"Regression":[142],"(LR)":[143],"Support":[145],"Vector":[146],"Machine":[147],"(SVM)":[148],"feature-ensemble":[151],"variations":[153],"boosting,":[155],"bagging,":[156],"mixture":[158,226],"expertise":[160],"investigate":[163],"effects":[165],"mixture,":[168,170],"learner":[169],"extra":[172],"training":[173,210],"on":[174],"performances":[176,231],"predictions.":[179],"results":[181,203],"indicated":[182,204],"features":[184],"extracted":[185],"middle":[188],"(end":[190],"exhalation":[191],"period)":[192],"recordings":[195],"led":[196],"highest":[199],"success.":[201],"having":[206],"higher":[207],"number":[208],"samples,":[211],"stronger":[213],"mixed":[214],"learners":[215],"are":[216],"influential":[217],"performance":[220],"across":[221,232],"while":[223],"did":[227],"not":[228],"improve":[229],"segments.":[233]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2566229159","counts_by_year":[{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":3},{"year":2019,"cited_by_count":1},{"year":2018,"cited_by_count":1},{"year":2017,"cited_by_count":1}],"updated_date":"2025-01-02T04:23:14.965413","created_date":"2017-01-06"}