{"id":"https://openalex.org/W1932275522","doi":"https://doi.org/10.1109/tvcg.2015.2467204","title":"Streamline Variability Plots for Characterizing the Uncertainty in Vector Field Ensembles","display_name":"Streamline Variability Plots for Characterizing the Uncertainty in Vector Field Ensembles","publication_year":2015,"publication_date":"2015-08-13","ids":{"openalex":"https://openalex.org/W1932275522","doi":"https://doi.org/10.1109/tvcg.2015.2467204","mag":"1932275522","pmid":"https://pubmed.ncbi.nlm.nih.gov/26390476"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tvcg.2015.2467204","pdf_url":null,"source":{"id":"https://openalex.org/S84775595","display_name":"IEEE Transactions on Visualization and Computer Graphics","issn_l":"1077-2626","issn":["1077-2626","1941-0506","2160-9306"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5013101044","display_name":"Florian Ferstl","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Florian Ferstl","raw_affiliation_strings":[", Computer Graphics and Visualization Group"],"affiliations":[{"raw_affiliation_string":", Computer Graphics and Visualization Group","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5109234117","display_name":"Kai B\u00fcrger","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Kai Burger","raw_affiliation_strings":[", Computer Graphics and Visualization Group"],"affiliations":[{"raw_affiliation_string":", Computer Graphics and Visualization Group","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5029621326","display_name":"R\u00fcdiger Westermann","orcid":"https://orcid.org/0000-0002-3394-0731"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Rudiger Westermann","raw_affiliation_strings":[", Computer Graphics and Visualization Group"],"affiliations":[{"raw_affiliation_string":", Computer Graphics and Visualization Group","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":7.977,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":98,"citation_normalized_percentile":{"value":0.935231,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":98,"max":99},"biblio":{"volume":"22","issue":"1","first_page":"767","last_page":"776"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10799","display_name":"Data Visualization and Analytics","score":0.9902,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10799","display_name":"Data Visualization and Analytics","score":0.9902,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13398","display_name":"Data Analysis with R","score":0.9877,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.978,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C60439489","wikidata":"https://www.wikidata.org/wiki/Q634407","display_name":"Streamlines, streaklines, and pathlines","level":2,"score":0.84783494},{"id":"https://openalex.org/C27438332","wikidata":"https://www.wikidata.org/wiki/Q2873","display_name":"Principal component analysis","level":2,"score":0.6117612},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.53505784},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.49928427},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.47591358},{"id":"https://openalex.org/C186450821","wikidata":"https://www.wikidata.org/wiki/Q17295","display_name":"Euclidean space","level":2,"score":0.45980635},{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.4482765},{"id":"https://openalex.org/C114289077","wikidata":"https://www.wikidata.org/wiki/Q3284399","display_name":"Statistical model","level":2,"score":0.4365043},{"id":"https://openalex.org/C177384507","wikidata":"https://www.wikidata.org/wiki/Q1149000","display_name":"Multivariate normal distribution","level":3,"score":0.42999166},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.38235158},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.3655131},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.36299103},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.35696268},{"id":"https://openalex.org/C161584116","wikidata":"https://www.wikidata.org/wiki/Q1952580","display_name":"Multivariate statistics","level":2,"score":0.14483118},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.12949815},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C97355855","wikidata":"https://www.wikidata.org/wiki/Q11473","display_name":"Thermodynamics","level":1,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tvcg.2015.2467204","pdf_url":null,"source":{"id":"https://openalex.org/S84775595","display_name":"IEEE Transactions on Visualization and Computer Graphics","issn_l":"1077-2626","issn":["1077-2626","1941-0506","2160-9306"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/26390476","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":52,"referenced_works":["https://openalex.org/W1488002754","https://openalex.org/W1601042374","https://openalex.org/W1606637515","https://openalex.org/W1723319196","https://openalex.org/W1964971935","https://openalex.org/W1968578042","https://openalex.org/W1969153223","https://openalex.org/W1969563507","https://openalex.org/W1972641242","https://openalex.org/W1982271317","https://openalex.org/W1990419021","https://openalex.org/W1990779238","https://openalex.org/W1994178293","https://openalex.org/W2000543333","https://openalex.org/W2003155854","https://openalex.org/W2011430131","https://openalex.org/W2016381774","https://openalex.org/W2020297738","https://openalex.org/W2028937404","https://openalex.org/W2038628506","https://openalex.org/W2043763577","https://openalex.org/W2049885731","https://openalex.org/W2054140635","https://openalex.org/W2055468724","https://openalex.org/W2069857144","https://openalex.org/W2084057287","https://openalex.org/W2095233635","https://openalex.org/W2098508087","https://openalex.org/W2098515641","https://openalex.org/W2104741316","https://openalex.org/W2109657057","https://openalex.org/W2114084204","https://openalex.org/W2116938231","https://openalex.org/W2121175842","https://openalex.org/W2122519391","https://openalex.org/W2126565921","https://openalex.org/W2127094813","https://openalex.org/W2129390822","https://openalex.org/W2138516914","https://openalex.org/W2141653286","https://openalex.org/W2151263703","https://openalex.org/W2152733311","https://openalex.org/W2153529786","https://openalex.org/W2156204145","https://openalex.org/W2229908198","https://openalex.org/W2293449835","https://openalex.org/W3107714133","https://openalex.org/W3146906819","https://openalex.org/W4212888252","https://openalex.org/W4241193301","https://openalex.org/W4244644321","https://openalex.org/W4293282014"],"related_works":["https://openalex.org/W4211209597","https://openalex.org/W3178621026","https://openalex.org/W3048981730","https://openalex.org/W2380927352","https://openalex.org/W2154522720","https://openalex.org/W2137598809","https://openalex.org/W2105354819","https://openalex.org/W2085553065","https://openalex.org/W2010654082","https://openalex.org/W1977082775"],"abstract_inverted_index":{"We":[0,23,120,145],"present":[1],"a":[2,20,35,57,63,102,131,153],"new":[3,132],"method":[4,151],"to":[5,28,85,129,163],"visualize":[6],"from":[7,71,96],"an":[8],"ensemble":[9],"of":[10,16,32,124,134,149,155],"flow":[11],"fields":[12],"the":[13,30,42,68,80,92,97,107,125,147],"statistical":[14,108],"properties":[15],"streamlines":[17,33,43,81],"passing":[18],"through":[19],"selected":[21],"location.":[22],"use":[24,123],"principal":[25,126],"component":[26,127],"analysis":[27],"transform":[29],"set":[31],"into":[34,46,101],"low-dimensional":[36,98],"Euclidean":[37,99,143],"space.":[38],"In":[39],"this":[40,116],"space":[41,100],"are":[44,82],"clustered":[45],"major":[47],"trends,":[48],"and":[49,110,158],"each":[50],"cluster":[51],"is":[52,88],"in":[53,78,115,141,152],"turn":[54],"approximated":[55],"by":[56,90,111],"multivariate":[58],"Gaussian":[59,93],"distribution.":[60],"This":[61,87],"yields":[62],"probabilistic":[64],"mixture":[65],"model":[66],"for":[67,167],"streamline":[69,103],"distribution,":[70],"which":[72,79],"confidence":[73,113],"regions":[74,114],"can":[75],"be":[76],"derived":[77],"most":[83],"likely":[84],"reside.":[86],"achieved":[89],"transforming":[91],"random":[94],"distributions":[95],"distribution":[104,117],"that":[105],"follows":[106],"model,":[109],"visualizing":[112],"via":[118],"iso-contours.":[119],"further":[121],"make":[122],"representation":[128],"introduce":[130],"concept":[133],"streamline-median,":[135],"based":[136],"on":[137],"existing":[138],"median":[139],"concepts":[140],"multidimensional":[142],"spaces.":[144],"demonstrate":[146],"potential":[148],"our":[150,161],"number":[154],"real-world":[156],"examples,":[157],"we":[159],"compare":[160],"results":[162],"alternative":[164],"clustering":[165],"approaches":[166],"particle":[168],"trajectories":[169],"as":[170,172],"well":[171],"curve":[173],"boxplots.":[174]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1932275522","counts_by_year":[{"year":2024,"cited_by_count":6},{"year":2023,"cited_by_count":5},{"year":2022,"cited_by_count":12},{"year":2021,"cited_by_count":9},{"year":2020,"cited_by_count":14},{"year":2019,"cited_by_count":15},{"year":2018,"cited_by_count":17},{"year":2017,"cited_by_count":10},{"year":2016,"cited_by_count":10}],"updated_date":"2025-01-09T13:27:37.650295","created_date":"2016-06-24"}