{"id":"https://openalex.org/W3009860139","doi":"https://doi.org/10.1109/tsp49548.2020.9163566","title":"Sparse and Cosparse Audio Dequantization Using Convex Optimization","display_name":"Sparse and Cosparse Audio Dequantization Using Convex Optimization","publication_year":2020,"publication_date":"2020-07-01","ids":{"openalex":"https://openalex.org/W3009860139","doi":"https://doi.org/10.1109/tsp49548.2020.9163566","mag":"3009860139"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tsp49548.2020.9163566","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"proceedings-article","indexed_in":["arxiv","crossref","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2003.04222","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5041829280","display_name":"Pavel Z\u00e1vi\u0161ka","orcid":"https://orcid.org/0000-0003-2221-2058"},"institutions":[{"id":"https://openalex.org/I60587646","display_name":"Brno University of Technology","ror":"https://ror.org/03613d656","country_code":"CZ","type":"education","lineage":["https://openalex.org/I60587646"]}],"countries":["CZ"],"is_corresponding":false,"raw_author_name":"Pavel Zaviska","raw_affiliation_strings":["Signal Processing Laboratory, Brno University of Technology, Brno, Czech Republic"],"affiliations":[{"raw_affiliation_string":"Signal Processing Laboratory, Brno University of Technology, Brno, Czech Republic","institution_ids":["https://openalex.org/I60587646"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5054854110","display_name":"Pavel Rajmic","orcid":"https://orcid.org/0000-0002-8381-4442"},"institutions":[{"id":"https://openalex.org/I60587646","display_name":"Brno University of Technology","ror":"https://ror.org/03613d656","country_code":"CZ","type":"education","lineage":["https://openalex.org/I60587646"]}],"countries":["CZ"],"is_corresponding":false,"raw_author_name":"Pavel Rajmic","raw_affiliation_strings":["Signal Processing Laboratory, Brno University of Technology, Brno, Czech Republic"],"affiliations":[{"raw_affiliation_string":"Signal Processing Laboratory, Brno University of Technology, Brno, Czech Republic","institution_ids":["https://openalex.org/I60587646"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":3,"citation_normalized_percentile":{"value":0.659622,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":73,"max":76},"biblio":{"volume":null,"issue":null,"first_page":"216","last_page":"220"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10662","display_name":"Ultrasonics and Acoustic Wave Propagation","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/2211","display_name":"Mechanics of Materials"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10500","display_name":"Sparse and Compressive Sensing Techniques","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C2221639","wikidata":"https://www.wikidata.org/wiki/Q2877","display_name":"Discrete cosine transform","level":3,"score":0.7185873},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.64819324},{"id":"https://openalex.org/C204323151","wikidata":"https://www.wikidata.org/wiki/Q905424","display_name":"Range (aeronautics)","level":2,"score":0.58302927},{"id":"https://openalex.org/C157972887","wikidata":"https://www.wikidata.org/wiki/Q463359","display_name":"Convex optimization","level":3,"score":0.50762165},{"id":"https://openalex.org/C169805256","wikidata":"https://www.wikidata.org/wiki/Q1361381","display_name":"Transform coding","level":4,"score":0.48928568},{"id":"https://openalex.org/C28726691","wikidata":"https://www.wikidata.org/wiki/Q1268231","display_name":"Modified discrete cosine transform","level":5,"score":0.4855666},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.47585982},{"id":"https://openalex.org/C112680207","wikidata":"https://www.wikidata.org/wiki/Q714886","display_name":"Regular polygon","level":2,"score":0.4652589},{"id":"https://openalex.org/C178009071","wikidata":"https://www.wikidata.org/wiki/Q93344","display_name":"Trigonometric functions","level":2,"score":0.41880786},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.382261},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.28469738},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.2639802},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.12649053},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0729869},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C146978453","wikidata":"https://www.wikidata.org/wiki/Q3798668","display_name":"Aerospace engineering","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tsp49548.2020.9163566","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2003.04222","pdf_url":"https://arxiv.org/pdf/2003.04222","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2003.04222","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2003.04222","pdf_url":"https://arxiv.org/pdf/2003.04222","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":["https://openalex.org/W3009860139"],"referenced_works_count":17,"referenced_works":["https://openalex.org/W1880742477","https://openalex.org/W1946620893","https://openalex.org/W1976709621","https://openalex.org/W2092663520","https://openalex.org/W2119667497","https://openalex.org/W2142280715","https://openalex.org/W2260602646","https://openalex.org/W2406690019","https://openalex.org/W2507109542","https://openalex.org/W2902285478","https://openalex.org/W2936709989","https://openalex.org/W2972666141","https://openalex.org/W2974123086","https://openalex.org/W3105867630","https://openalex.org/W4214498238","https://openalex.org/W4246379976","https://openalex.org/W85271845"],"related_works":["https://openalex.org/W2736872557","https://openalex.org/W2565123265","https://openalex.org/W2162505377","https://openalex.org/W2128618986","https://openalex.org/W2116601382","https://openalex.org/W2115252864","https://openalex.org/W2112852877","https://openalex.org/W2111266495","https://openalex.org/W2094583657","https://openalex.org/W2090071970"],"abstract_inverted_index":{"The":[0,50],"paper":[1,51],"shows":[2,52],"the":[3,15,27,30,35,54,60,63,70],"potential":[4],"of":[5,17,29],"sparsity-based":[6],"methods":[7],"in":[8,84],"restoring":[9],"quantized":[10],"signals.":[11],"Following":[12],"up":[13],"on":[14],"study":[16],"Brauer":[18],"et":[19],"al.":[20],"(IEEE":[21],"ICASSP":[22],"2016),":[23],"we":[24,33,39,44,79],"significantly":[25],"extend":[26],"range":[28],"evaluation":[31],"scenarios:":[32],"introduce":[34],"analysis":[36],"(cosparse)":[37],"model,":[38],"use":[40],"more":[41],"effective":[42],"algorithms,":[43],"experiment":[45],"with":[46],"another":[47],"time-frequency":[48],"transform.":[49,74],"that":[53],"analysis-based":[55],"model":[56],"performs":[57],"comparably":[58],"to":[59],"synthesis-model,":[61],"but":[62,76],"Gabor":[64],"transform":[65],"produces":[66],"better":[67],"results":[68],"than":[69],"originally":[71],"used":[72],"cosine":[73],"Last":[75],"not":[77],"least,":[78],"provide":[80],"codes":[81],"and":[82],"data":[83],"a":[85],"reproducible":[86],"way.":[87]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3009860139","counts_by_year":[{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":2}],"updated_date":"2025-01-18T11:20:29.197862","created_date":"2020-03-13"}