{"id":"https://openalex.org/W3021167987","doi":"https://doi.org/10.1109/tsp.2021.3072482","title":"Robust M-Estimation Based Bayesian Cluster Enumeration for Real Elliptically Symmetric Distributions","display_name":"Robust M-Estimation Based Bayesian Cluster Enumeration for Real Elliptically Symmetric Distributions","publication_year":2021,"publication_date":"2021-01-01","ids":{"openalex":"https://openalex.org/W3021167987","doi":"https://doi.org/10.1109/tsp.2021.3072482","mag":"3021167987"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tsp.2021.3072482","pdf_url":null,"source":{"id":"https://openalex.org/S168680287","display_name":"IEEE Transactions on Signal Processing","issn_l":"1053-587X","issn":["1053-587X","1941-0476"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["arxiv","crossref","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2005.01404","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5015040771","display_name":"Christian A. Schroth","orcid":"https://orcid.org/0000-0002-5480-5141"},"institutions":[{"id":"https://openalex.org/I31512782","display_name":"Technical University of Darmstadt","ror":"https://ror.org/05n911h24","country_code":"DE","type":"education","lineage":["https://openalex.org/I31512782"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Christian Schroth","raw_affiliation_strings":["Signal Processing Group, Technische Universit\u00e4t Darmstadt, Darmstadt, Germany"],"affiliations":[{"raw_affiliation_string":"Signal Processing Group, Technische Universit\u00e4t Darmstadt, Darmstadt, Germany","institution_ids":["https://openalex.org/I31512782"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5068601055","display_name":"Michael Muma","orcid":"https://orcid.org/0000-0002-7983-1944"},"institutions":[{"id":"https://openalex.org/I31512782","display_name":"Technical University of Darmstadt","ror":"https://ror.org/05n911h24","country_code":"DE","type":"education","lineage":["https://openalex.org/I31512782"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Michael Muma","raw_affiliation_strings":["Signal Processing Group, Technische Universit\u00e4t Darmstadt, Darmstadt, Germany"],"affiliations":[{"raw_affiliation_string":"Signal Processing Group, Technische Universit\u00e4t Darmstadt, Darmstadt, Germany","institution_ids":["https://openalex.org/I31512782"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.483,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":15,"citation_normalized_percentile":{"value":0.999972,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":91,"max":92},"biblio":{"volume":"69","issue":null,"first_page":"3525","last_page":"3540"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11901","display_name":"Bayesian Methods and Mixture Models","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11901","display_name":"Bayesian Methods and Mixture Models","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10243","display_name":"Statistical Methods and Bayesian Inference","score":0.9955,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10968","display_name":"Statistical Distribution Estimation and Applications","score":0.9915,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/enumeration","display_name":"Enumeration","score":0.6418741},{"id":"https://openalex.org/keywords/symmetric-probability-distribution","display_name":"Symmetric probability distribution","score":0.43805075}],"concepts":[{"id":"https://openalex.org/C156340839","wikidata":"https://www.wikidata.org/wiki/Q2704791","display_name":"Enumeration","level":2,"score":0.6418741},{"id":"https://openalex.org/C164866538","wikidata":"https://www.wikidata.org/wiki/Q367351","display_name":"Cluster (spacecraft)","level":2,"score":0.49552453},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.49548018},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.49051327},{"id":"https://openalex.org/C72396439","wikidata":"https://www.wikidata.org/wiki/Q16000505","display_name":"Symmetric probability distribution","level":3,"score":0.43805075},{"id":"https://openalex.org/C28826006","wikidata":"https://www.wikidata.org/wiki/Q33521","display_name":"Applied mathematics","level":1,"score":0.42982644},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.40520692},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.35687405},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.34651086},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.32491615},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.28540212},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.26242226},{"id":"https://openalex.org/C149441793","wikidata":"https://www.wikidata.org/wiki/Q200726","display_name":"Probability distribution","level":2,"score":0.25719786},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tsp.2021.3072482","pdf_url":null,"source":{"id":"https://openalex.org/S168680287","display_name":"IEEE Transactions on Signal Processing","issn_l":"1053-587X","issn":["1053-587X","1941-0476"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2005.01404","pdf_url":"https://arxiv.org/pdf/2005.01404","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2005.01404","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2005.01404","pdf_url":"https://arxiv.org/pdf/2005.01404","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":["https://openalex.org/W3021167987"],"referenced_works_count":51,"referenced_works":["https://openalex.org/W1128809682","https://openalex.org/W1814500939","https://openalex.org/W194034371","https://openalex.org/W1971784203","https://openalex.org/W1971953978","https://openalex.org/W1976969815","https://openalex.org/W1988261662","https://openalex.org/W1992511687","https://openalex.org/W2014509644","https://openalex.org/W2035799816","https://openalex.org/W2047555270","https://openalex.org/W2049633694","https://openalex.org/W2069820356","https://openalex.org/W2070824691","https://openalex.org/W2073459066","https://openalex.org/W2077321682","https://openalex.org/W2086685817","https://openalex.org/W2112905646","https://openalex.org/W2125924636","https://openalex.org/W2128310573","https://openalex.org/W2148249824","https://openalex.org/W2150593711","https://openalex.org/W2161503240","https://openalex.org/W2168175751","https://openalex.org/W2330070481","https://openalex.org/W2517162628","https://openalex.org/W2595142274","https://openalex.org/W2784273717","https://openalex.org/W2791732556","https://openalex.org/W2796484413","https://openalex.org/W2797638056","https://openalex.org/W2884244916","https://openalex.org/W2888427976","https://openalex.org/W2922931220","https://openalex.org/W2953615794","https://openalex.org/W2957414787","https://openalex.org/W2963384369","https://openalex.org/W2981176021","https://openalex.org/W3004435768","https://openalex.org/W3034975587","https://openalex.org/W3038452799","https://openalex.org/W3107476107","https://openalex.org/W4211079158","https://openalex.org/W4236253072","https://openalex.org/W4252019146","https://openalex.org/W4288091081","https://openalex.org/W4289237042","https://openalex.org/W4298299628","https://openalex.org/W4302078450","https://openalex.org/W4389116646","https://openalex.org/W747911303"],"related_works":["https://openalex.org/W588267724","https://openalex.org/W4300125793","https://openalex.org/W4297743441","https://openalex.org/W3042106073","https://openalex.org/W2952598754","https://openalex.org/W2578985712","https://openalex.org/W2406961474","https://openalex.org/W2143566611","https://openalex.org/W2057205169","https://openalex.org/W108845024"],"abstract_inverted_index":{"Robustly":[0],"determining":[1],"the":[2,26,31,51,59,92,139],"optimal":[3],"number":[4],"of":[5,19,58,62,94,112],"clusters":[6],"in":[7,15,30,170],"a":[8,16,56,107,121,166],"data":[9,33,125,154],"set":[10],"is":[11,34],"an":[12,134],"essential":[13],"factor":[14],"wide":[17],"range":[18],"applications.":[20],"Cluster":[21],"enumeration":[22,44,53,71],"becomes":[23],"challenging":[24],"when":[25],"true":[27],"underlying":[28],"structure":[29],"observed":[32],"corrupted":[35],"by":[36,49],"heavy-tailed":[37],"noise":[38],"and":[39,114,131,152,160,163],"outliers.":[40],"Recently,":[41],"Bayesian":[42,69],"cluster":[43,52,70],"criteria":[45],"have":[46],"been":[47],"derived":[48],"formulating":[50],"problem":[54],"as":[55],"maximization":[57],"posterior":[60],"probability":[61,109],"candidate":[63],"models.":[64],"This":[65],"article":[66],"generalizes":[67],"robust":[68,97,122],"so":[72],"that":[73],"it":[74],"can":[75],"be":[76],"used":[77],"with":[78,127],"any":[79],"arbitrary":[80],"Real":[81],"Elliptically":[82],"Symmetric":[83],"(RES)":[84],"distributed":[85],"mixture":[86,101],"model.":[87],"Our":[88],"framework":[89],"also":[90,132],"covers":[91],"case":[93],"M-estimators.":[95],"These":[96],"estimators":[98],"allow":[99],"for":[100,124],"models,":[102],"which":[103],"are":[104,117,148],"decoupled":[105],"from":[106],"specific":[108],"distribution.":[110],"Examples":[111],"Huber's":[113],"Tukey's":[115],"M-estimators":[116],"discussed.":[118],"We":[119],"derive":[120],"criterion":[123],"sets":[126],"finite":[128],"sample":[129,144],"size,":[130],"provide":[133],"asymptotic":[135],"approximation":[136],"to":[137,150,172],"reduce":[138],"computational":[140],"cost":[141],"at":[142],"large":[143],"sizes.":[145],"The":[146],"algorithms":[147],"applied":[149],"simulated":[151],"real-world":[153],"sets,":[155],"including":[156],"radar-based":[157],"person":[158],"identification":[159],"remote":[161],"sensing,":[162],"they":[164],"show":[165],"significant":[167],"robustness":[168],"improvement":[169],"comparison":[171],"existing":[173],"methods.":[174]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3021167987","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":6},{"year":2020,"cited_by_count":2}],"updated_date":"2024-12-13T02:39:41.775087","created_date":"2020-05-13"}