{"id":"https://openalex.org/W2965717404","doi":"https://doi.org/10.1109/tsp.2019.8769093","title":"Use of Spatial Information via Markov and Conditional Random Fields in Histopathological Images","display_name":"Use of Spatial Information via Markov and Conditional Random Fields in Histopathological Images","publication_year":2019,"publication_date":"2019-07-01","ids":{"openalex":"https://openalex.org/W2965717404","doi":"https://doi.org/10.1109/tsp.2019.8769093","mag":"2965717404"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tsp.2019.8769093","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5110630874","display_name":"Sara Behjat Jamal","orcid":null},"institutions":[{"id":"https://openalex.org/I42317466","display_name":"Alt\u0131nba\u015f University","ror":"https://ror.org/0145w8333","country_code":"TR","type":"education","lineage":["https://openalex.org/I42317466"]}],"countries":["TR"],"is_corresponding":false,"raw_author_name":"Sara Behjat Jamal","raw_affiliation_strings":["Dept. of Computer Programming, Altinbas University, Istanbul, Turkey"],"affiliations":[{"raw_affiliation_string":"Dept. of Computer Programming, Altinbas University, Istanbul, Turkey","institution_ids":["https://openalex.org/I42317466"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5082045666","display_name":"G\u00f6khan Bilgin","orcid":"https://orcid.org/0000-0002-5532-477X"},"institutions":[{"id":"https://openalex.org/I4101805","display_name":"Y\u0131ld\u0131z Technical University","ror":"https://ror.org/0547yzj13","country_code":"TR","type":"education","lineage":["https://openalex.org/I4101805"]}],"countries":["TR"],"is_corresponding":false,"raw_author_name":"Gokhan Bilgin","raw_affiliation_strings":["Dept. of Computer Engineering, Yildiz Technical University, Istanbul, Turkey"],"affiliations":[{"raw_affiliation_string":"Dept. of Computer Engineering, Yildiz Technical University, Istanbul, Turkey","institution_ids":["https://openalex.org/I4101805"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.274,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":4,"citation_normalized_percentile":{"value":0.694943,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":77,"max":79},"biblio":{"volume":null,"issue":null,"first_page":"71","last_page":"75"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12874","display_name":"Digital Imaging for Blood Diseases","score":0.988,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9613,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/markov-random-field","display_name":"Markov random field","score":0.49087745},{"id":"https://openalex.org/keywords/crfs","display_name":"CRFS","score":0.43610743}],"concepts":[{"id":"https://openalex.org/C152565575","wikidata":"https://www.wikidata.org/wiki/Q1124538","display_name":"Conditional random field","level":2,"score":0.7852957},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7685157},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.72676283},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6667},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.6548294},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.65392524},{"id":"https://openalex.org/C159620131","wikidata":"https://www.wikidata.org/wiki/Q1938983","display_name":"Spatial analysis","level":2,"score":0.5559848},{"id":"https://openalex.org/C169258074","wikidata":"https://www.wikidata.org/wiki/Q245748","display_name":"Random forest","level":2,"score":0.5521459},{"id":"https://openalex.org/C130402806","wikidata":"https://www.wikidata.org/wiki/Q5361768","display_name":"Random field","level":2,"score":0.55093604},{"id":"https://openalex.org/C2778045648","wikidata":"https://www.wikidata.org/wiki/Q176827","display_name":"Markov random field","level":4,"score":0.49087745},{"id":"https://openalex.org/C65885262","wikidata":"https://www.wikidata.org/wiki/Q7429708","display_name":"Scale-space segmentation","level":4,"score":0.48951066},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.46381184},{"id":"https://openalex.org/C98763669","wikidata":"https://www.wikidata.org/wiki/Q176645","display_name":"Markov chain","level":2,"score":0.4618605},{"id":"https://openalex.org/C2775953691","wikidata":"https://www.wikidata.org/wiki/Q5013874","display_name":"CRFS","level":3,"score":0.43610743},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.431452},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.37452638},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.30191493},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.24737525},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.10849282}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tsp.2019.8769093","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.46,"id":"https://metadata.un.org/sdg/15","display_name":"Life on land"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":29,"referenced_works":["https://openalex.org/W1503812425","https://openalex.org/W1560512119","https://openalex.org/W1878940107","https://openalex.org/W1908709377","https://openalex.org/W1976033677","https://openalex.org/W1985258161","https://openalex.org/W2051765910","https://openalex.org/W2052093305","https://openalex.org/W2092834568","https://openalex.org/W2095844239","https://openalex.org/W2113242816","https://openalex.org/W2114361266","https://openalex.org/W2114864270","https://openalex.org/W2117395293","https://openalex.org/W2119821739","https://openalex.org/W2120340025","https://openalex.org/W2126922455","https://openalex.org/W2147880316","https://openalex.org/W2152768474","https://openalex.org/W2156515921","https://openalex.org/W2167219413","https://openalex.org/W2781892802","https://openalex.org/W2887766607","https://openalex.org/W2890699804","https://openalex.org/W2897173759","https://openalex.org/W2909455961","https://openalex.org/W2963074323","https://openalex.org/W4238530616","https://openalex.org/W4239510810"],"related_works":["https://openalex.org/W50079190","https://openalex.org/W3108423214","https://openalex.org/W3088215229","https://openalex.org/W2796133761","https://openalex.org/W2511246383","https://openalex.org/W2356597680","https://openalex.org/W2111726165","https://openalex.org/W2055466819","https://openalex.org/W2011251309","https://openalex.org/W182104056"],"abstract_inverted_index":{"This":[0],"study":[1,21],"aims":[2],"to":[3,23,49,80,91,119,149],"increase":[4],"the":[5,20,84,93,101,105,109,135,151],"segmentation":[6,77,94,152],"accuracy":[7,95,153],"by":[8],"using":[9,32],"spatial":[10,121,138],"information":[11,87,122,139],"in":[12,19,83,100,123],"biomedical":[13],"histopathological":[14,67,124,155],"images.":[15,68,156],"The":[16],"first":[17],"step":[18,107],"is":[22],"provide":[24],"pre-segmentation":[25],"of":[26,96,108,137,154],"H":[27],"&":[28],"E":[29],"stained":[30],"images":[31,82,125],"supervised":[33,74],"learning":[34,75],"methods,":[35],"which":[36],"are":[37,57,78,117],"k-nearest":[38],"neighbors":[39],"algorithm,":[40],"support":[41],"vector":[42],"machine":[43],"and":[44,61,112,142],"random":[45,114,144],"forest.":[46],"In":[47,104],"order":[48],"build":[50],"necessary":[51],"classifier":[52],"models,":[53],"several":[54],"training":[55],"sets":[56],"created":[58],"from":[59,66],"intracellular":[60],"extra-cellular":[62],"image":[63,98],"patches":[64],"extracted":[65],"As":[69],"a":[70,127],"two-class":[71],"classification":[72,102],"approach,":[73],"based":[76],"applied":[79],"test":[81],"evaluations.":[85],"Spatial":[86],"should":[88],"be":[89,147],"used":[90,148],"improve":[92,150],"output":[97],"obtained":[99],"step.":[103],"second":[106],"study,":[110],"Markov":[111,141],"conditional":[113,143],"fields":[115,145],"methods":[116],"utilized":[118],"exploit":[120],"as":[126],"post":[128],"processing":[129],"approach.":[130],"Comparative":[131],"results":[132],"prove":[133],"that":[134],"use":[136],"via":[140],"can":[146]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2965717404","counts_by_year":[{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":1},{"year":2019,"cited_by_count":1}],"updated_date":"2025-01-06T14:49:41.552691","created_date":"2019-08-13"}