{"id":"https://openalex.org/W2121639850","doi":"https://doi.org/10.1109/tsp.2006.887131","title":"Time-Width Versus Frequency Band Mapping of Energy Distributions","display_name":"Time-Width Versus Frequency Band Mapping of Energy Distributions","publication_year":2007,"publication_date":"2007-02-28","ids":{"openalex":"https://openalex.org/W2121639850","doi":"https://doi.org/10.1109/tsp.2006.887131","mag":"2121639850"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tsp.2006.887131","pdf_url":null,"source":{"id":"https://openalex.org/S168680287","display_name":"IEEE Transactions on Signal Processing","issn_l":"1053-587X","issn":["1053-587X","1941-0476"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101630545","display_name":"Karthikeyan Umapathy","orcid":"https://orcid.org/0000-0002-0152-6472"},"institutions":[{"id":"https://openalex.org/I530967","display_name":"Toronto Metropolitan University","ror":"https://ror.org/05g13zd79","country_code":"CA","type":"funder","lineage":["https://openalex.org/I530967"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Karthikeyan Umapathy","raw_affiliation_strings":["Dept. of Electr. & Comput. Engg, Ryerson Univ., Toronto, Ont."],"affiliations":[{"raw_affiliation_string":"Dept. of Electr. & Comput. Engg, Ryerson Univ., Toronto, Ont.","institution_ids":["https://openalex.org/I530967"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5086845888","display_name":"Sridhar Krishnan","orcid":"https://orcid.org/0000-0002-4659-564X"},"institutions":[{"id":"https://openalex.org/I530967","display_name":"Toronto Metropolitan University","ror":"https://ror.org/05g13zd79","country_code":"CA","type":"funder","lineage":["https://openalex.org/I530967"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Sridhar Krishnan","raw_affiliation_strings":["Dept. of Electr. & Comput. Engg, Ryerson Univ., Toronto, Ont."],"affiliations":[{"raw_affiliation_string":"Dept. of Electr. & Comput. Engg, Ryerson Univ., Toronto, Ont.","institution_ids":["https://openalex.org/I530967"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.333,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":12,"citation_normalized_percentile":{"value":0.823207,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":84,"max":85},"biblio":{"volume":"55","issue":"3","first_page":"978","last_page":"989"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10860","display_name":"Speech and Audio Processing","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation Techniques","score":0.9961,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/signal","display_name":"SIGNAL (programming language)","score":0.4167009}],"concepts":[{"id":"https://openalex.org/C142433447","wikidata":"https://www.wikidata.org/wiki/Q7806653","display_name":"Time\u2013frequency analysis","level":3,"score":0.60985506},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5978555},{"id":"https://openalex.org/C204241405","wikidata":"https://www.wikidata.org/wiki/Q461499","display_name":"Transformation (genetics)","level":3,"score":0.58684427},{"id":"https://openalex.org/C104267543","wikidata":"https://www.wikidata.org/wiki/Q208163","display_name":"Signal processing","level":3,"score":0.5640825},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5606006},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.49752143},{"id":"https://openalex.org/C156872377","wikidata":"https://www.wikidata.org/wiki/Q6786281","display_name":"Matching pursuit","level":3,"score":0.4906036},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4849134},{"id":"https://openalex.org/C205203396","wikidata":"https://www.wikidata.org/wiki/Q612143","display_name":"Bilinear interpolation","level":2,"score":0.4770619},{"id":"https://openalex.org/C117251300","wikidata":"https://www.wikidata.org/wiki/Q1849855","display_name":"Parametric statistics","level":2,"score":0.42625746},{"id":"https://openalex.org/C2779843651","wikidata":"https://www.wikidata.org/wiki/Q7390335","display_name":"SIGNAL (programming language)","level":2,"score":0.4167009},{"id":"https://openalex.org/C124681953","wikidata":"https://www.wikidata.org/wiki/Q339062","display_name":"Decomposition","level":2,"score":0.41312033},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.29959726},{"id":"https://openalex.org/C84462506","wikidata":"https://www.wikidata.org/wiki/Q173142","display_name":"Digital signal processing","level":2,"score":0.27865344},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.15540728},{"id":"https://openalex.org/C18903297","wikidata":"https://www.wikidata.org/wiki/Q7150","display_name":"Ecology","level":1,"score":0.0},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.0},{"id":"https://openalex.org/C124851039","wikidata":"https://www.wikidata.org/wiki/Q2665459","display_name":"Compressed sensing","level":2,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C9390403","wikidata":"https://www.wikidata.org/wiki/Q3966","display_name":"Computer hardware","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tsp.2006.887131","pdf_url":null,"source":{"id":"https://openalex.org/S168680287","display_name":"IEEE Transactions on Signal Processing","issn_l":"1053-587X","issn":["1053-587X","1941-0476"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Reduced inequalities","score":0.44,"id":"https://metadata.un.org/sdg/10"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":17,"referenced_works":["https://openalex.org/W2010895513","https://openalex.org/W2021600666","https://openalex.org/W2035071469","https://openalex.org/W2071419894","https://openalex.org/W2109655672","https://openalex.org/W2115755118","https://openalex.org/W2118376687","https://openalex.org/W2127503407","https://openalex.org/W2132317560","https://openalex.org/W2140706593","https://openalex.org/W2151693816","https://openalex.org/W2152999428","https://openalex.org/W2158706760","https://openalex.org/W2163505020","https://openalex.org/W2165878107","https://openalex.org/W2170509092","https://openalex.org/W2171282760"],"related_works":["https://openalex.org/W4317791936","https://openalex.org/W2964898233","https://openalex.org/W2382555176","https://openalex.org/W2362576574","https://openalex.org/W2347904868","https://openalex.org/W2094896467","https://openalex.org/W2073038598","https://openalex.org/W1981874526","https://openalex.org/W1927135183","https://openalex.org/W1820289435"],"abstract_inverted_index":{"Most":[0],"of":[1,9,14,28,158,166,183,189,200,207,221,227,243],"the":[2,15,21,92,159,164,193,201,219,222,241],"signal":[3,30,66],"processing":[4,188],"operations":[5],"involve":[6],"some":[7,226],"kind":[8],"a":[10,29,112,129,209],"transformation":[11,55],"or":[12,20],"approximation":[13,22],"signal.":[16],"The":[17,53,181,197,214],"transform":[18],"coefficients":[19],"parameters":[23,162],"reveal":[24],"many":[25],"hidden":[26],"characteristics":[27],"that":[31,140],"can":[32,56],"be":[33,57],"appropriately":[34],"processed":[35],"to":[36,50,175],"extract":[37],"useful":[38],"information.":[39],"In":[40],"recent":[41],"years,":[42],"adaptive":[43],"time-frequency":[44],"(TF)":[45],"transformations":[46],"have":[47],"significantly":[48],"contributed":[49],"this":[51,126],"area.":[52],"TF":[54,72,79,114,118,160,179],"classified":[58],"into":[59],"two":[60],"main":[61],"categories":[62],"based":[63,120],"on":[64,111,121],"1)":[65],"decomposition":[67,95,115,127,161],"approaches":[68,96],"and":[69,85,101,145,191,225,234],"2)":[70],"bilinear":[71],"distributions":[73,80],"(also":[74],"known":[75],"as":[76,170],"Cohen's":[77],"class).":[78],"are":[81,97],"nonparametric":[82],"in":[83,99,217],"nature":[84,100],"mainly":[86],"used":[87],"for":[88,104,152,245],"visualization":[89],"purposes.":[90],"On":[91],"other":[93],"hand,":[94],"parametric":[98],"highly":[102],"suitable":[103],"objective":[105],"feature":[106],"extraction.":[107],"This":[108,155],"paper":[109,215],"focuses":[110],"particular":[113],"approach":[116],"(adaptive":[117],"transformation)":[119],"matching":[122],"pursuit-type":[123],"algorithm.":[124],"Using":[125],"approach,":[128],"novel":[130],"time-width":[131],"versus":[132],"frequency":[133],"band":[134],"(TWFB)":[135],"energy":[136],"mapping":[137,157,224],"is":[138],"proposed":[139],"possesses":[141],"both":[142],"parameterization":[143],"benefits":[144,242],"meaningful":[146],"visual":[147,198],"patterns":[148,199],"with":[149,232],"favorable":[150],"properties":[151],"pattern":[153,211,246],"recognition.":[154],"organized":[156],"allows":[163],"application":[165,177],"pruning":[167],"algorithms":[168],"such":[169],"local":[171],"discriminant":[172],"bases":[173],"(LDB)":[174],"identify":[176],"specific":[178],"subspaces.":[180],"identification":[182],"these":[184],"subspaces":[185],"enables":[186],"efficient":[187],"information":[190],"reduces":[192],"computational":[194],"effort":[195],"considerably.":[196],"TWFB":[202,223,244],"mappings":[203],"exhibit":[204],"high":[205],"potential":[206],"becoming":[208],"powerful":[210],"analysis":[212],"tool.":[213],"covers":[216],"detail":[218],"formulation":[220],"its":[228],"properties.":[229],"Experiments":[230],"performed":[231],"speech":[233],"synthetic":[235],"signals":[236],"produced":[237],"desirable":[238],"results":[239],"demonstrating":[240],"recognition":[247],"related":[248],"applications":[249]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2121639850","counts_by_year":[{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":4},{"year":2017,"cited_by_count":1},{"year":2015,"cited_by_count":1},{"year":2013,"cited_by_count":1},{"year":2012,"cited_by_count":1}],"updated_date":"2025-03-20T07:40:27.188510","created_date":"2016-06-24"}