{"id":"https://openalex.org/W2103457925","doi":"https://doi.org/10.1109/tsmcb.2011.2107035","title":"Hybrid Training Method for MLP: Optimization of Architecture and Training","display_name":"Hybrid Training Method for MLP: Optimization of Architecture and Training","publication_year":2011,"publication_date":"2011-02-11","ids":{"openalex":"https://openalex.org/W2103457925","doi":"https://doi.org/10.1109/tsmcb.2011.2107035","mag":"2103457925","pmid":"https://pubmed.ncbi.nlm.nih.gov/21317085"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tsmcb.2011.2107035","pdf_url":null,"source":{"id":"https://openalex.org/S4210170378","display_name":"IEEE Transactions on Systems Man and Cybernetics Part B (Cybernetics)","issn_l":"1083-4419","issn":["1083-4419","1941-0492"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5086345001","display_name":"Cleber Zanchettin","orcid":"https://orcid.org/0000-0001-6421-9747"},"institutions":[{"id":"https://openalex.org/I71437568","display_name":"Universidade de Pernambuco","ror":"https://ror.org/00gtcbp88","country_code":"BR","type":"education","lineage":["https://openalex.org/I71437568"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Cleber Zanchettin","raw_affiliation_strings":["Center of Inf., Fed. Univ. of Pernambuco, Recife, , Brazil"],"affiliations":[{"raw_affiliation_string":"Center of Inf., Fed. Univ. of Pernambuco, Recife, , Brazil","institution_ids":["https://openalex.org/I71437568"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5025550530","display_name":"Teresa B. Ludermir","orcid":"https://orcid.org/0000-0002-8980-6742"},"institutions":[{"id":"https://openalex.org/I71437568","display_name":"Universidade de Pernambuco","ror":"https://ror.org/00gtcbp88","country_code":"BR","type":"education","lineage":["https://openalex.org/I71437568"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Teresa B. Ludermir","raw_affiliation_strings":["Center of Inf., Fed. Univ. of Pernambuco, Recife, , Brazil"],"affiliations":[{"raw_affiliation_string":"Center of Inf., Fed. Univ. of Pernambuco, Recife, , Brazil","institution_ids":["https://openalex.org/I71437568"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5107299070","display_name":"Leandro M. Almeida","orcid":null},"institutions":[{"id":"https://openalex.org/I71437568","display_name":"Universidade de Pernambuco","ror":"https://ror.org/00gtcbp88","country_code":"BR","type":"education","lineage":["https://openalex.org/I71437568"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Leandro Maciel Almeida","raw_affiliation_strings":["Center of Inf., Fed. Univ. of Pernambuco, Recife, , Brazil"],"affiliations":[{"raw_affiliation_string":"Center of Inf., Fed. Univ. of Pernambuco, Recife, , Brazil","institution_ids":["https://openalex.org/I71437568"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":3.793,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":60,"citation_normalized_percentile":{"value":0.980232,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":96,"max":97},"biblio":{"volume":"41","issue":"4","first_page":"1097","last_page":"1109"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9968,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9968,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10100","display_name":"Metaheuristic Optimization Algorithms Research","score":0.9906,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11975","display_name":"Evolutionary Algorithms and Applications","score":0.958,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/backpropagation","display_name":"Backpropagation","score":0.6585067},{"id":"https://openalex.org/keywords/maxima-and-minima","display_name":"Maxima and minima","score":0.63706756},{"id":"https://openalex.org/keywords/multilayer-perceptron","display_name":"Multilayer perceptron","score":0.55426645},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.47727913},{"id":"https://openalex.org/keywords/global-optimization","display_name":"Global Optimization","score":0.4678092},{"id":"https://openalex.org/keywords/perceptron","display_name":"Perceptron","score":0.46173275},{"id":"https://openalex.org/keywords/constructive","display_name":"Constructive","score":0.44375437}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.71317315},{"id":"https://openalex.org/C126980161","wikidata":"https://www.wikidata.org/wiki/Q863783","display_name":"Simulated annealing","level":2,"score":0.67427653},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.6650935},{"id":"https://openalex.org/C155032097","wikidata":"https://www.wikidata.org/wiki/Q798503","display_name":"Backpropagation","level":3,"score":0.6585067},{"id":"https://openalex.org/C186633575","wikidata":"https://www.wikidata.org/wiki/Q845060","display_name":"Maxima and minima","level":2,"score":0.63706756},{"id":"https://openalex.org/C123370116","wikidata":"https://www.wikidata.org/wiki/Q1424540","display_name":"Tabu search","level":2,"score":0.59235203},{"id":"https://openalex.org/C179717631","wikidata":"https://www.wikidata.org/wiki/Q2991667","display_name":"Multilayer perceptron","level":3,"score":0.55426645},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5451606},{"id":"https://openalex.org/C8880873","wikidata":"https://www.wikidata.org/wiki/Q187787","display_name":"Genetic algorithm","level":2,"score":0.5407081},{"id":"https://openalex.org/C193415008","wikidata":"https://www.wikidata.org/wiki/Q639681","display_name":"Network architecture","level":2,"score":0.49025112},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.47727913},{"id":"https://openalex.org/C173801870","wikidata":"https://www.wikidata.org/wiki/Q201413","display_name":"Heuristic","level":2,"score":0.46906185},{"id":"https://openalex.org/C164752517","wikidata":"https://www.wikidata.org/wiki/Q5570875","display_name":"Global optimization","level":2,"score":0.4678092},{"id":"https://openalex.org/C60908668","wikidata":"https://www.wikidata.org/wiki/Q690207","display_name":"Perceptron","level":3,"score":0.46173275},{"id":"https://openalex.org/C148483581","wikidata":"https://www.wikidata.org/wiki/Q446488","display_name":"Feature selection","level":2,"score":0.45875406},{"id":"https://openalex.org/C2777303404","wikidata":"https://www.wikidata.org/wiki/Q759757","display_name":"Convergence (economics)","level":2,"score":0.45209533},{"id":"https://openalex.org/C2778701210","wikidata":"https://www.wikidata.org/wiki/Q28130034","display_name":"Constructive","level":3,"score":0.44375437},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.42122164},{"id":"https://openalex.org/C123657996","wikidata":"https://www.wikidata.org/wiki/Q12271","display_name":"Architecture","level":2,"score":0.41943336},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.3950649},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.2868424},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.14781988},{"id":"https://openalex.org/C142362112","wikidata":"https://www.wikidata.org/wiki/Q735","display_name":"Art","level":0,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C153349607","wikidata":"https://www.wikidata.org/wiki/Q36649","display_name":"Visual arts","level":1,"score":0.0},{"id":"https://openalex.org/C50522688","wikidata":"https://www.wikidata.org/wiki/Q189833","display_name":"Economic growth","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tsmcb.2011.2107035","pdf_url":null,"source":{"id":"https://openalex.org/S4210170378","display_name":"IEEE Transactions on Systems Man and Cybernetics Part B (Cybernetics)","issn_l":"1083-4419","issn":["1083-4419","1941-0492"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/21317085","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Industry, innovation and infrastructure","score":0.5,"id":"https://metadata.un.org/sdg/9"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":42,"referenced_works":["https://openalex.org/W1216451687","https://openalex.org/W145476170","https://openalex.org/W1559923427","https://openalex.org/W1607768087","https://openalex.org/W1639032689","https://openalex.org/W1951775667","https://openalex.org/W1985877574","https://openalex.org/W1996688253","https://openalex.org/W2001646920","https://openalex.org/W2021309800","https://openalex.org/W2024060531","https://openalex.org/W2040884411","https://openalex.org/W2045095368","https://openalex.org/W2072458630","https://openalex.org/W2077237678","https://openalex.org/W2084792706","https://openalex.org/W2084812512","https://openalex.org/W2088978850","https://openalex.org/W2094631910","https://openalex.org/W2098133322","https://openalex.org/W2103575890","https://openalex.org/W2106346128","https://openalex.org/W2110740191","https://openalex.org/W2112061072","https://openalex.org/W2114053544","https://openalex.org/W2127984126","https://openalex.org/W2139236022","https://openalex.org/W2145085734","https://openalex.org/W2152150600","https://openalex.org/W2155019998","https://openalex.org/W2156728410","https://openalex.org/W2157080539","https://openalex.org/W2164359548","https://openalex.org/W2165132362","https://openalex.org/W2799061466","https://openalex.org/W2982720039","https://openalex.org/W3023540311","https://openalex.org/W3030985299","https://openalex.org/W4230946174","https://openalex.org/W42654547","https://openalex.org/W4285719527","https://openalex.org/W4876512"],"related_works":["https://openalex.org/W749491080","https://openalex.org/W2886600732","https://openalex.org/W2883877271","https://openalex.org/W2349436282","https://openalex.org/W2316430615","https://openalex.org/W2150138875","https://openalex.org/W2103457925","https://openalex.org/W2090251470","https://openalex.org/W2082482750","https://openalex.org/W2007800922"],"abstract_inverted_index":{"The":[0,83,129],"performance":[1,34,130],"of":[2,12,35,40,48,63,86,122,125,131,139,152],"an":[3,46,136],"artificial":[4],"neural":[5],"network":[6,16,22],"(ANN)":[7],"depends":[8],"upon":[9],"the":[10,33,36,55,61,64,89,99,104,120,149,153],"selection":[11],"proper":[13],"connection":[14],"weights,":[15],"architecture,":[17],"and":[18,42,75,116,158,182],"cost":[19,146],"function":[20],"during":[21],"training.":[23],"This":[24],"paper":[25],"presents":[26],"a":[27,49,91,123],"hybrid":[28],"approach":[29],"(GaTSa)":[30],"to":[31,94,106],"optimize":[32],"ANN":[37,156],"in":[38,98,148,177],"terms":[39],"architecture":[41,100,157],"weights.":[43,159],"GaTSa":[44,57,87,132,163,172],"is":[45,58,133],"extension":[47],"previous":[50],"method":[51],"(TSa)":[52],"proposed":[53],"by":[54,119],"authors.":[56],"based":[59,101],"on":[60,102],"integration":[62],"heuristic":[65],"simulated":[66],"annealing":[67],"(SA),":[68],"tabu":[69],"search":[70],"(TS),":[71],"genetic":[72],"algorithms":[73],"(GA),":[74],"backpropagation,":[76],"whereas":[77],"TSa":[78],"does":[79],"not":[80],"use":[81],"GA.":[82],"main":[84],"advantages":[85],"are":[88],"following:":[90],"constructive":[92],"process":[93],"add":[95],"new":[96],"nodes":[97],"GA,":[103],"ability":[105],"escape":[107],"from":[108],"local":[109,183],"minima":[110],"with":[111,179],"uphill":[112],"moves":[113],"(SA":[114],"feature),":[115],"faster":[117],"convergence":[118],"evaluation":[121,138],"set":[124],"solutions":[126],"(TS":[127],"feature).":[128],"investigated":[134],"through":[135],"empirical":[137],"11":[140],"public-domain":[141],"data":[142],"sets":[143],"using":[144],"different":[145],"functions":[147],"simultaneous":[150],"optimization":[151,184],"multilayer":[154],"perceptron":[155],"Experiments":[160],"demonstrated":[161],"that":[162],"can":[164],"also":[165],"be":[166],"used":[167],"for":[168],"relevant":[169,175],"feature":[170],"selection.":[171],"presented":[173],"statistically":[174],"results":[176],"comparison":[178],"other":[180],"global":[181],"techniques.":[185]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2103457925","counts_by_year":[{"year":2024,"cited_by_count":6},{"year":2023,"cited_by_count":6},{"year":2022,"cited_by_count":8},{"year":2021,"cited_by_count":4},{"year":2020,"cited_by_count":7},{"year":2019,"cited_by_count":5},{"year":2018,"cited_by_count":1},{"year":2017,"cited_by_count":5},{"year":2016,"cited_by_count":4},{"year":2015,"cited_by_count":4},{"year":2014,"cited_by_count":2},{"year":2013,"cited_by_count":3},{"year":2012,"cited_by_count":4}],"updated_date":"2025-01-18T18:48:52.875285","created_date":"2016-06-24"}