{"id":"https://openalex.org/W3080246469","doi":"https://doi.org/10.1109/tsg.2020.3019263","title":"Predicting Weather-Related Failure Risk in Distribution Systems Using Bayesian Neural Network","display_name":"Predicting Weather-Related Failure Risk in Distribution Systems Using Bayesian Neural Network","publication_year":2020,"publication_date":"2020-08-25","ids":{"openalex":"https://openalex.org/W3080246469","doi":"https://doi.org/10.1109/tsg.2020.3019263","mag":"3080246469"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tsg.2020.3019263","pdf_url":null,"source":{"id":"https://openalex.org/S59604973","display_name":"IEEE Transactions on Smart Grid","issn_l":"1949-3053","issn":["1949-3053","1949-3061"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5040786809","display_name":"Ying Du","orcid":"https://orcid.org/0000-0002-7119-8996"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"funder","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Ying Du","raw_affiliation_strings":["Shanghai Jiao Tong University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Shanghai Jiao Tong University, Shanghai, China","institution_ids":["https://openalex.org/I183067930"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100613444","display_name":"Yadong Liu","orcid":"https://orcid.org/0000-0003-0448-9010"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"funder","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yadong Liu","raw_affiliation_strings":["Shanghai Jiao Tong University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Shanghai Jiao Tong University, Shanghai, China","institution_ids":["https://openalex.org/I183067930"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5090162303","display_name":"Xuhong Wang","orcid":"https://orcid.org/0000-0002-0944-8667"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"funder","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xuhong Wang","raw_affiliation_strings":["Shanghai Jiao Tong University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Shanghai Jiao Tong University, Shanghai, China","institution_ids":["https://openalex.org/I183067930"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101491023","display_name":"Jian Fang","orcid":"https://orcid.org/0000-0003-0889-2907"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"funder","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jian Fang","raw_affiliation_strings":["Shanghai Jiao Tong University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Shanghai Jiao Tong University, Shanghai, China","institution_ids":["https://openalex.org/I183067930"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5111959438","display_name":"Gehao Sheng","orcid":"https://orcid.org/0000-0002-9454-5284"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"funder","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Gehao Sheng","raw_affiliation_strings":["Shanghai Jiao Tong University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Shanghai Jiao Tong University, Shanghai, China","institution_ids":["https://openalex.org/I183067930"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5038426348","display_name":"Xiuchen Jiang","orcid":null},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"funder","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiuchen Jiang","raw_affiliation_strings":["Shanghai Jiao Tong University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Shanghai Jiao Tong University, Shanghai, China","institution_ids":["https://openalex.org/I183067930"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":5.247,"has_fulltext":false,"cited_by_count":41,"citation_normalized_percentile":{"value":0.999812,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":96,"max":97},"biblio":{"volume":"12","issue":"1","first_page":"350","last_page":"360"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11941","display_name":"Power System Reliability and Maintenance","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/2213","display_name":"Safety, Risk, Reliability and Quality"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11941","display_name":"Power System Reliability and Maintenance","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/2213","display_name":"Safety, Risk, Reliability and Quality"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11606","display_name":"Infrastructure Maintenance and Monitoring","score":0.9918,"subfield":{"id":"https://openalex.org/subfields/2205","display_name":"Civil and Structural Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11343","display_name":"Power Transformer Diagnostics and Insulation","score":0.9891,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/interpretability","display_name":"Interpretability","score":0.8200606},{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.66484976},{"id":"https://openalex.org/keywords/prediction-interval","display_name":"Prediction interval","score":0.55630445},{"id":"https://openalex.org/keywords/predictive-modelling","display_name":"Predictive modelling","score":0.47094524}],"concepts":[{"id":"https://openalex.org/C2781067378","wikidata":"https://www.wikidata.org/wiki/Q17027399","display_name":"Interpretability","level":2,"score":0.8200606},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.66484976},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.58349496},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.56094426},{"id":"https://openalex.org/C103402496","wikidata":"https://www.wikidata.org/wiki/Q1106171","display_name":"Prediction interval","level":2,"score":0.55630445},{"id":"https://openalex.org/C43214815","wikidata":"https://www.wikidata.org/wiki/Q7310987","display_name":"Reliability (semiconductor)","level":3,"score":0.53183866},{"id":"https://openalex.org/C33724603","wikidata":"https://www.wikidata.org/wiki/Q812540","display_name":"Bayesian network","level":2,"score":0.5293045},{"id":"https://openalex.org/C200601418","wikidata":"https://www.wikidata.org/wiki/Q2193887","display_name":"Reliability engineering","level":1,"score":0.5045022},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.47575352},{"id":"https://openalex.org/C45804977","wikidata":"https://www.wikidata.org/wiki/Q7239673","display_name":"Predictive modelling","level":2,"score":0.47094524},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.431978},{"id":"https://openalex.org/C21001229","wikidata":"https://www.wikidata.org/wiki/Q182868","display_name":"Weather forecasting","level":2,"score":0.41528878},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4147993},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.3438967},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.29158944},{"id":"https://openalex.org/C153294291","wikidata":"https://www.wikidata.org/wiki/Q25261","display_name":"Meteorology","level":1,"score":0.0},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C163258240","wikidata":"https://www.wikidata.org/wiki/Q25342","display_name":"Power (physics)","level":2,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tsg.2020.3019263","pdf_url":null,"source":{"id":"https://openalex.org/S59604973","display_name":"IEEE Transactions on Smart Grid","issn_l":"1949-3053","issn":["1949-3053","1949-3061"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"51707117"}],"datasets":[],"versions":[],"referenced_works_count":25,"referenced_works":["https://openalex.org/W1965555277","https://openalex.org/W1968969471","https://openalex.org/W1988790447","https://openalex.org/W2009573574","https://openalex.org/W2011566106","https://openalex.org/W2014910243","https://openalex.org/W2015452969","https://openalex.org/W2052805238","https://openalex.org/W2064462974","https://openalex.org/W2089635373","https://openalex.org/W2108677974","https://openalex.org/W2114933419","https://openalex.org/W2118894361","https://openalex.org/W2164430234","https://openalex.org/W2539054576","https://openalex.org/W2558094457","https://openalex.org/W2615267732","https://openalex.org/W2751802138","https://openalex.org/W2764582432","https://openalex.org/W2911964244","https://openalex.org/W2946361733","https://openalex.org/W2951266961","https://openalex.org/W2953070705","https://openalex.org/W2965563166","https://openalex.org/W2987821246"],"related_works":["https://openalex.org/W4390569940","https://openalex.org/W4361193272","https://openalex.org/W4310278675","https://openalex.org/W2953394921","https://openalex.org/W2905433371","https://openalex.org/W2904627439","https://openalex.org/W2888392564","https://openalex.org/W2487170621","https://openalex.org/W2172982367","https://openalex.org/W1997526000"],"abstract_inverted_index":{"The":[0,128],"reliability":[1],"of":[2,22,42,69,100,125,131,145,159,169,178],"distribution":[3,26],"systems":[4,27],"is":[5,74,162],"often":[6],"challenged":[7],"under":[8,84],"unfavorable":[9],"weather":[10],"conditions,":[11],"where":[12],"weather-related":[13,23,58],"failures":[14,24,59],"occur":[15],"with":[16,79],"high":[17,101],"probability.":[18],"Predicting":[19],"the":[20,38,70,98,123,157,167,170,175,179],"number":[21],"in":[25,97],"can":[28,134],"provide":[29],"guiding":[30,142,153],"information":[31,140],"for":[32,141],"operation":[33,150],"and":[34,64,151,173],"maintenance":[35,152],"decisions,":[36],"improving":[37],"risk":[39,143],"management":[40,144],"capability":[41,124],"utility":[43,146],"companies.":[44,147],"This":[45],"article":[46],"proposes":[47],"a":[48],"novel":[49],"Bayesian":[50],"Neural":[51],"Network":[52],"(BNN)":[53],"based":[54,72,90,119,155],"model":[55,73,92,121,172],"to":[56,107],"predict":[57],"caused":[60],"by":[61,76],"wind,":[62],"rain":[63],"lightning.":[65],"Superior":[66],"prediction":[67,82,91,99,111,115,120,132,160],"performance":[68],"BNN":[71,89,118],"verified":[75],"contrast":[77],"experiments":[78],"other":[80],"advanced":[81],"models":[83,112],"four":[85],"different":[86],"evaluation":[87],"metrics.":[88],"presents":[93],"remarkable":[94],"robustness,":[95],"especially":[96],"failure":[102],"levels.":[103],"In":[104],"addition,":[105],"compared":[106],"most":[108],"previous":[109],"used":[110],"without":[113],"any":[114],"confidence":[116,129],"feedback,":[117],"has":[122],"uncertainty":[126,161],"estimation.":[127],"interval":[130],"results":[133],"be":[135],"obtained,":[136],"which":[137,164],"provides":[138],"sufficient":[139],"An":[148],"effective":[149],"scheme":[154],"on":[156],"analysis":[158],"proposed,":[163],"fully":[165],"excavates":[166],"interpretability":[168],"proposed":[171],"enrich":[174],"application":[176],"value":[177],"model.":[180]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3080246469","counts_by_year":[{"year":2024,"cited_by_count":8},{"year":2023,"cited_by_count":9},{"year":2022,"cited_by_count":14},{"year":2021,"cited_by_count":7},{"year":2020,"cited_by_count":1}],"updated_date":"2025-02-21T09:21:48.030827","created_date":"2020-09-01"}