{"id":"https://openalex.org/W4282934976","doi":"https://doi.org/10.1109/tpami.2022.3178442","title":"Unsupervised Learning for Maximum Consensus Robust Fitting: A Reinforcement Learning Approach","display_name":"Unsupervised Learning for Maximum Consensus Robust Fitting: A Reinforcement Learning Approach","publication_year":2022,"publication_date":"2022-01-01","ids":{"openalex":"https://openalex.org/W4282934976","doi":"https://doi.org/10.1109/tpami.2022.3178442","pmid":"https://pubmed.ncbi.nlm.nih.gov/35622794"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tpami.2022.3178442","pdf_url":null,"source":{"id":"https://openalex.org/S199944782","display_name":"IEEE Transactions on Pattern Analysis and Machine Intelligence","issn_l":"0162-8828","issn":["0162-8828","1939-3539","2160-9292"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320439","host_organization_name":"IEEE Computer Society","host_organization_lineage":["https://openalex.org/P4310320439","https://openalex.org/P4310319808"],"host_organization_lineage_names":["IEEE Computer Society","Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5074184065","display_name":"Giang Truong","orcid":"https://orcid.org/0000-0002-7690-7739"},"institutions":[{"id":"https://openalex.org/I12079687","display_name":"Edith Cowan University","ror":"https://ror.org/05jhnwe22","country_code":"AU","type":"education","lineage":["https://openalex.org/I12079687"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Giang Truong","raw_affiliation_strings":["School of Science, Edith Cowan University, Joondalup, WA 6027, Australia"],"affiliations":[{"raw_affiliation_string":"School of Science, Edith Cowan University, Joondalup, WA 6027, Australia","institution_ids":["https://openalex.org/I12079687"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5055405019","display_name":"Huu Le","orcid":"https://orcid.org/0000-0001-7562-7180"},"institutions":[{"id":"https://openalex.org/I66862912","display_name":"Chalmers University of Technology","ror":"https://ror.org/040wg7k59","country_code":"SE","type":"education","lineage":["https://openalex.org/I66862912"]}],"countries":["SE"],"is_corresponding":false,"raw_author_name":"Huu Le","raw_affiliation_strings":["Chalmers University of Technology, Goteborg 412 96, Sweden"],"affiliations":[{"raw_affiliation_string":"Chalmers University of Technology, Goteborg 412 96, Sweden","institution_ids":["https://openalex.org/I66862912"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5014124196","display_name":"Erchuan Zhang","orcid":"https://orcid.org/0000-0002-4005-5431"},"institutions":[{"id":"https://openalex.org/I12079687","display_name":"Edith Cowan University","ror":"https://ror.org/05jhnwe22","country_code":"AU","type":"education","lineage":["https://openalex.org/I12079687"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Erchuan Zhang","raw_affiliation_strings":["School of Science, Edith Cowan University, Joondalup, WA 6027, Australia"],"affiliations":[{"raw_affiliation_string":"School of Science, Edith Cowan University, Joondalup, WA 6027, Australia","institution_ids":["https://openalex.org/I12079687"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5031492664","display_name":"David Suter","orcid":"https://orcid.org/0000-0001-6306-3023"},"institutions":[{"id":"https://openalex.org/I12079687","display_name":"Edith Cowan University","ror":"https://ror.org/05jhnwe22","country_code":"AU","type":"education","lineage":["https://openalex.org/I12079687"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"David Suter","raw_affiliation_strings":["School of Science, Edith Cowan University, Joondalup, WA 6027, Australia"],"affiliations":[{"raw_affiliation_string":"School of Science, Edith Cowan University, Joondalup, WA 6027, Australia","institution_ids":["https://openalex.org/I12079687"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5075172808","display_name":"Syed Zulqarnain Gilani","orcid":"https://orcid.org/0000-0002-7448-2327"},"institutions":[{"id":"https://openalex.org/I12079687","display_name":"Edith Cowan University","ror":"https://ror.org/05jhnwe22","country_code":"AU","type":"education","lineage":["https://openalex.org/I12079687"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Syed Zulqarnain Gilani","raw_affiliation_strings":["School of Science, Edith Cowan University, Joondalup, WA 6027, Australia"],"affiliations":[{"raw_affiliation_string":"School of Science, Edith Cowan University, Joondalup, WA 6027, Australia","institution_ids":["https://openalex.org/I12079687"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.648,"has_fulltext":false,"cited_by_count":4,"citation_normalized_percentile":{"value":0.685436,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":80,"max":83},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"1"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9962,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/supervised-learning","display_name":"Supervised Learning","score":0.455723},{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.42800155}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7712543},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.72657204},{"id":"https://openalex.org/C97541855","wikidata":"https://www.wikidata.org/wiki/Q830687","display_name":"Reinforcement learning","level":2,"score":0.717433},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.68891},{"id":"https://openalex.org/C79337645","wikidata":"https://www.wikidata.org/wiki/Q779824","display_name":"Outlier","level":2,"score":0.60270596},{"id":"https://openalex.org/C8038995","wikidata":"https://www.wikidata.org/wiki/Q1152135","display_name":"Unsupervised learning","level":2,"score":0.565224},{"id":"https://openalex.org/C58973888","wikidata":"https://www.wikidata.org/wiki/Q1041418","display_name":"Semi-supervised learning","level":2,"score":0.51544744},{"id":"https://openalex.org/C136389625","wikidata":"https://www.wikidata.org/wiki/Q334384","display_name":"Supervised learning","level":3,"score":0.455723},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.42800155},{"id":"https://openalex.org/C192209626","wikidata":"https://www.wikidata.org/wiki/Q190909","display_name":"Focus (optics)","level":2,"score":0.4274672},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.21036729},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tpami.2022.3178442","pdf_url":null,"source":{"id":"https://openalex.org/S199944782","display_name":"IEEE Transactions on Pattern Analysis and Machine Intelligence","issn_l":"0162-8828","issn":["0162-8828","1939-3539","2160-9292"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320439","host_organization_name":"IEEE Computer Society","host_organization_lineage":["https://openalex.org/P4310320439","https://openalex.org/P4310319808"],"host_organization_lineage_names":["IEEE Computer Society","Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/35622794","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320334704","funder_display_name":"Australian Research Council","award_id":"DP200103448"}],"datasets":[],"versions":[],"referenced_works_count":50,"referenced_works":["https://openalex.org/W1612997784","https://openalex.org/W1789652828","https://openalex.org/W1920022804","https://openalex.org/W2026888851","https://openalex.org/W2033819227","https://openalex.org/W2041708912","https://openalex.org/W2042799324","https://openalex.org/W2046033161","https://openalex.org/W2046434485","https://openalex.org/W2085261163","https://openalex.org/W2104391975","https://openalex.org/W2106199912","https://openalex.org/W2112634643","https://openalex.org/W2114274324","https://openalex.org/W2130017587","https://openalex.org/W2150066425","https://openalex.org/W22745672","https://openalex.org/W2471962767","https://openalex.org/W2746553466","https://openalex.org/W2751901725","https://openalex.org/W2763831782","https://openalex.org/W2779406699","https://openalex.org/W2884194835","https://openalex.org/W2894971516","https://openalex.org/W2948859010","https://openalex.org/W2950200454","https://openalex.org/W2962828767","https://openalex.org/W2963674285","https://openalex.org/W2964147239","https://openalex.org/W2967579851","https://openalex.org/W2979750740","https://openalex.org/W2986382673","https://openalex.org/W2988085408","https://openalex.org/W2990655570","https://openalex.org/W2998327136","https://openalex.org/W3011120880","https://openalex.org/W3034275286","https://openalex.org/W3034373437","https://openalex.org/W3034438849","https://openalex.org/W3035030518","https://openalex.org/W3035563186","https://openalex.org/W3037943248","https://openalex.org/W3105706360","https://openalex.org/W3166285241","https://openalex.org/W3173564996","https://openalex.org/W3177033155","https://openalex.org/W4213251304","https://openalex.org/W4214717370","https://openalex.org/W4300583748","https://openalex.org/W4301454730"],"related_works":["https://openalex.org/W4390062853","https://openalex.org/W4319302697","https://openalex.org/W4310801741","https://openalex.org/W3148060700","https://openalex.org/W2921630034","https://openalex.org/W2794908468","https://openalex.org/W2553312496","https://openalex.org/W2531570999","https://openalex.org/W2062926306","https://openalex.org/W2042184006"],"abstract_inverted_index":{"Robust":[0],"model":[1,81],"fitting":[2],"is":[3,29,90,135,153],"a":[4,55,67,103,156,171,180],"core":[5],"algorithm":[6],"in":[7],"several":[8],"computer":[9],"vision":[10],"applications.":[11],"Despite":[12],"being":[13],"studied":[14],"for":[15,21],"decades,":[16],"solving":[17],"this":[18,63],"problem":[19],"efficiently":[20],"datasets":[22],"that":[23,72,115],"are":[24,51],"heavily":[25],"contaminated":[26],"by":[27,177],"outliers":[28],"still":[30],"challenging:":[31],"due":[32],"to":[33,74,92,102,129,137,139,144,154],"the":[34,93,145,185],"underlying":[35,94],"computational":[36],"complexity.":[37],"A":[38],"recent":[39],"focus":[40],"has":[41],"been":[42],"on":[43],"learning-based":[44,86],"algorithms.":[45],"However,":[46],"most":[47],"of":[48,58,106,150,173,179,187],"these":[49],"approaches":[50],"supervised":[52],"(which":[53],"require":[54],"large":[56],"amount":[57],"labelled":[59,77],"training":[60],"data).":[61],"In":[62],"paper,":[64],"we":[65],"introduce":[66],"novel":[68],"unsupervised":[69],"learning":[70,121],"framework:":[71],"learns":[73],"directly":[75],"(without":[76],"data)":[78],"solve":[79],"robust":[80],"fitting.":[82],"Moreover,":[83],"unlike":[84],"other":[85],"methods,":[87],"our":[88,116,151],"work":[89],"agnostic":[91],"input":[95],"features,":[96],"and":[97,123,166,190],"can":[98],"be":[99],"easily":[100],"generalized":[101],"wide":[104],"variety":[105],"LP-type":[107],"problems":[108],"with":[109],"quasi-convex":[110],"residuals.":[111],"We":[112,169,182],"empirically":[113],"show":[114],"method":[117],"outperforms":[118],"existing":[119],"(un)supervised":[120],"approaches,":[122],"also":[124,183],"achieves":[125],"competitive":[126],"results":[127],"compared":[128],"traditional":[130],"(non-learning-based)":[131],"methods.":[132],"Our":[133],"approach":[134],"designed":[136],"try":[138],"maximise":[140],"consensus":[141],"(MaxCon),":[142],"similar":[143],"popular":[146],"RANSAC.":[147],"The":[148],"basis":[149],"approach,":[152],"adopt":[155],"Reinforcement":[157],"Learning":[158],"framework.":[159],"This":[160],"requires":[161],"designing":[162],"appropriate":[163],"reward":[164,174],"functions,":[165,175],"state":[167],"encodings.":[168],"provide":[170],"family":[172],"tunable":[176],"choice":[178],"parameter.":[181],"investigate":[184],"application":[186],"different":[188],"basic":[189],"enhanced":[191],"Q-learning":[192],"components.":[193]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4282934976","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":3}],"updated_date":"2025-01-06T11:44:06.472646","created_date":"2022-06-16"}