{"id":"https://openalex.org/W3034782107","doi":"https://doi.org/10.1109/tpami.2020.3001433","title":"Multi-View Representation Learning With Deep Gaussian Processes","display_name":"Multi-View Representation Learning With Deep Gaussian Processes","publication_year":2020,"publication_date":"2020-06-10","ids":{"openalex":"https://openalex.org/W3034782107","doi":"https://doi.org/10.1109/tpami.2020.3001433","mag":"3034782107","pmid":"https://pubmed.ncbi.nlm.nih.gov/32750782"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tpami.2020.3001433","pdf_url":null,"source":{"id":"https://openalex.org/S199944782","display_name":"IEEE Transactions on Pattern Analysis and Machine Intelligence","issn_l":"0162-8828","issn":["0162-8828","1939-3539","2160-9292"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320439","host_organization_name":"IEEE Computer Society","host_organization_lineage":["https://openalex.org/P4310320439","https://openalex.org/P4310319808"],"host_organization_lineage_names":["IEEE Computer Society","Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5047846625","display_name":"Shiliang Sun","orcid":"https://orcid.org/0000-0001-7069-3752"},"institutions":[{"id":"https://openalex.org/I66867065","display_name":"East China Normal University","ror":"https://ror.org/02n96ep67","country_code":"CN","type":"funder","lineage":["https://openalex.org/I66867065"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shiliang Sun","raw_affiliation_strings":["School of Computer Science and Technology, East China Normal University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Technology, East China Normal University, Shanghai, China","institution_ids":["https://openalex.org/I66867065"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5052208756","display_name":"Wenbo Dong","orcid":"https://orcid.org/0000-0001-9451-8502"},"institutions":[{"id":"https://openalex.org/I66867065","display_name":"East China Normal University","ror":"https://ror.org/02n96ep67","country_code":"CN","type":"funder","lineage":["https://openalex.org/I66867065"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wenbo Dong","raw_affiliation_strings":["School of Computer Science and Technology, East China Normal University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Technology, East China Normal University, Shanghai, China","institution_ids":["https://openalex.org/I66867065"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5002143218","display_name":"Qiuyang Liu","orcid":"https://orcid.org/0000-0002-0689-1233"},"institutions":[{"id":"https://openalex.org/I66867065","display_name":"East China Normal University","ror":"https://ror.org/02n96ep67","country_code":"CN","type":"funder","lineage":["https://openalex.org/I66867065"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Qiuyang Liu","raw_affiliation_strings":["School of Computer Science and Technology, East China Normal University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Technology, East China Normal University, Shanghai, China","institution_ids":["https://openalex.org/I66867065"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":5.196,"has_fulltext":false,"cited_by_count":65,"citation_normalized_percentile":{"value":0.999974,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":"43","issue":"12","first_page":"4453","last_page":"4468"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12814","display_name":"Gaussian Processes and Bayesian Inference","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12814","display_name":"Gaussian Processes and Bayesian Inference","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9542,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11236","display_name":"Control Systems and Identification","score":0.9473,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/representation","display_name":"Representation","score":0.6138215},{"id":"https://openalex.org/keywords/external-data-representation","display_name":"External Data Representation","score":0.5349191},{"id":"https://openalex.org/keywords/feature-learning","display_name":"Feature Learning","score":0.4891725}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7720336},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.70660955},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.61786216},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.6138215},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5865427},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.57540584},{"id":"https://openalex.org/C116409475","wikidata":"https://www.wikidata.org/wiki/Q1385056","display_name":"External Data Representation","level":2,"score":0.5349191},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.52084523},{"id":"https://openalex.org/C61326573","wikidata":"https://www.wikidata.org/wiki/Q1496376","display_name":"Gaussian process","level":3,"score":0.4910431},{"id":"https://openalex.org/C59404180","wikidata":"https://www.wikidata.org/wiki/Q17013334","display_name":"Feature learning","level":2,"score":0.4891725},{"id":"https://openalex.org/C192209626","wikidata":"https://www.wikidata.org/wiki/Q190909","display_name":"Focus (optics)","level":2,"score":0.4825558},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.33406416},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tpami.2020.3001433","pdf_url":null,"source":{"id":"https://openalex.org/S199944782","display_name":"IEEE Transactions on Pattern Analysis and Machine Intelligence","issn_l":"0162-8828","issn":["0162-8828","1939-3539","2160-9292"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320439","host_organization_name":"IEEE Computer Society","host_organization_lineage":["https://openalex.org/P4310320439","https://openalex.org/P4310319808"],"host_organization_lineage_names":["IEEE Computer Society","Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/32750782","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Quality education","score":0.43,"id":"https://metadata.un.org/sdg/4"}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61673179"},{"funder":"https://openalex.org/F4320335787","funder_display_name":"Fundamental Research Funds for the Central Universities","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":62,"referenced_works":["https://openalex.org/W1473009882","https://openalex.org/W1523385540","https://openalex.org/W1536675765","https://openalex.org/W1571870753","https://openalex.org/W1670132599","https://openalex.org/W1746819321","https://openalex.org/W1866206747","https://openalex.org/W1869602175","https://openalex.org/W1883346539","https://openalex.org/W1965555277","https://openalex.org/W2035205472","https://openalex.org/W2035299679","https://openalex.org/W2048679005","https://openalex.org/W2049365101","https://openalex.org/W2072128103","https://openalex.org/W2085789144","https://openalex.org/W2100235303","https://openalex.org/W2104156750","https://openalex.org/W2104563967","https://openalex.org/W2105709960","https://openalex.org/W2117063635","https://openalex.org/W2141350700","https://openalex.org/W2142674578","https://openalex.org/W2142911962","https://openalex.org/W2158703881","https://openalex.org/W2163922914","https://openalex.org/W2178987369","https://openalex.org/W2186500555","https://openalex.org/W2225156818","https://openalex.org/W2257113116","https://openalex.org/W2396665160","https://openalex.org/W2418258728","https://openalex.org/W2515971946","https://openalex.org/W2526639894","https://openalex.org/W2530846021","https://openalex.org/W2577431043","https://openalex.org/W2581157837","https://openalex.org/W2590019597","https://openalex.org/W2728139190","https://openalex.org/W2751911346","https://openalex.org/W2753064086","https://openalex.org/W2766678531","https://openalex.org/W2898233200","https://openalex.org/W2901896705","https://openalex.org/W2953263857","https://openalex.org/W2962779017","https://openalex.org/W2962851448","https://openalex.org/W2963090522","https://openalex.org/W2963560814","https://openalex.org/W2963711523","https://openalex.org/W2963764569","https://openalex.org/W2963935178","https://openalex.org/W2964052793","https://openalex.org/W2964059111","https://openalex.org/W2981337591","https://openalex.org/W3101380508","https://openalex.org/W4211049957","https://openalex.org/W4231109964","https://openalex.org/W4297813703","https://openalex.org/W53987483","https://openalex.org/W582134693","https://openalex.org/W66306528"],"related_works":["https://openalex.org/W4323911413","https://openalex.org/W4286796787","https://openalex.org/W4210631502","https://openalex.org/W3134504629","https://openalex.org/W2952582877","https://openalex.org/W2952512863","https://openalex.org/W2938696877","https://openalex.org/W2169866437","https://openalex.org/W1982536061","https://openalex.org/W1964286703"],"abstract_inverted_index":{"Multi-view":[0],"representation":[1,54,80,99,106,122,213],"learning":[2,23,55,81],"is":[3,119,125,139],"a":[4,78,211],"promising":[5],"and":[6,42,65,97,101],"challenging":[7],"research":[8],"topic,":[9],"which":[10,46,89,124,142,197],"aims":[11,143],"to":[12,20,69,128,144,149,209],"integrate":[13,202],"multiple":[14,207],"data":[15,53,64,121,188],"information":[16,205],"from":[17],"different":[18,169,181],"views":[19,170,208],"improve":[21],"the":[22,32,70,91,152,156,178,191,194,203,215],"performance.":[24],"The":[25,110,116,136],"recent":[26],"deep":[27,84,94],"Gaussian":[28,85,95],"processes":[29,86,96],"(DGPs)":[30],"have":[31],"advantages":[33,92],"of":[34,93,107,113,133,171,177,193,214],"good":[35,212],"uncertainty":[36],"estimates,":[37],"powerful":[38],"non-linear":[39],"mapping":[40],"ability":[41],"great":[43],"generalization":[44],"capability,":[45],"can":[47,102,201],"be":[48],"used":[49,127],"as":[50],"an":[51,146],"excellent":[52],"method.":[56],"However,":[57],"DGPs":[58],"only":[59],"focus":[60],"on":[61,185],"single":[62],"view":[63],"are":[66],"rarely":[67],"applied":[68],"multi-view":[71,79,98,108,120,134,187],"scenario.":[72],"In":[73,159],"this":[74],"paper,":[75],"we":[76],"propose":[77],"algorithm":[82],"with":[83,161],"(named":[87],"MvDGPs),":[88],"inherits":[90],"learning,":[100,123],"learn":[103,129],"more":[104,130],"effective":[105],"data.":[109,135,216],"MvDGPs":[111,163,200],"consist":[112],"two":[114],"stages.":[115],"first":[117,157],"stage":[118,138],"mainly":[126],"comprehensive":[131],"representations":[132,153],"second":[137],"classifier":[140,148],"design,":[141],"select":[145],"appropriate":[147],"better":[150,175],"employ":[151],"obtained":[154],"in":[155,174,206],"stage.":[158],"contrast":[160],"DGPs,":[162],"support":[164],"asymmetrical":[165],"modeling":[166],"depths":[167],"for":[168],"data,":[172],"resulting":[173],"characterizations":[176],"discrepancies":[179],"among":[180],"views.":[182],"Experimental":[183],"results":[184],"real-world":[186],"sets":[189],"verify":[190],"effectiveness":[192],"proposed":[195],"algorithm,":[196],"indicates":[198],"that":[199],"complementary":[204],"discover":[210]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3034782107","counts_by_year":[{"year":2025,"cited_by_count":2},{"year":2024,"cited_by_count":19},{"year":2023,"cited_by_count":15},{"year":2022,"cited_by_count":19},{"year":2021,"cited_by_count":8},{"year":2020,"cited_by_count":2}],"updated_date":"2025-04-23T21:06:22.082493","created_date":"2020-06-19"}