{"id":"https://openalex.org/W2074668987","doi":"https://doi.org/10.1109/tpami.2012.48","title":"Semi-Supervised Hashing for Large-Scale Search","display_name":"Semi-Supervised Hashing for Large-Scale Search","publication_year":2012,"publication_date":"2012-02-07","ids":{"openalex":"https://openalex.org/W2074668987","doi":"https://doi.org/10.1109/tpami.2012.48","mag":"2074668987","pmid":"https://pubmed.ncbi.nlm.nih.gov/22331853"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tpami.2012.48","pdf_url":null,"source":{"id":"https://openalex.org/S199944782","display_name":"IEEE Transactions on Pattern Analysis and Machine Intelligence","issn_l":"0162-8828","issn":["0162-8828","1939-3539","2160-9292"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320439","host_organization_name":"IEEE Computer Society","host_organization_lineage":["https://openalex.org/P4310320439","https://openalex.org/P4310319808"],"host_organization_lineage_names":["IEEE Computer Society","Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://www.ee.columbia.edu/ln/dvmm/publications/12/PAMI_SSHASH.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100384655","display_name":"Jun Wang","orcid":"https://orcid.org/0000-0001-9223-2615"},"institutions":[{"id":"https://openalex.org/I1341412227","display_name":"IBM (United States)","ror":"https://ror.org/05hh8d621","country_code":"US","type":"funder","lineage":["https://openalex.org/I1341412227"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"None Jun Wang","raw_affiliation_strings":["Bus. Analytics & Math. Sci. Dept., IBM T.J. Watson Res. Center, Yorktown Heights, NY, USA"],"affiliations":[{"raw_affiliation_string":"Bus. Analytics & Math. Sci. Dept., IBM T.J. Watson Res. Center, Yorktown Heights, NY, USA","institution_ids":["https://openalex.org/I1341412227"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5018301052","display_name":"Sanjiv Kumar","orcid":"https://orcid.org/0000-0002-4080-1414"},"institutions":[{"id":"https://openalex.org/I1291425158","display_name":"Google (United States)","ror":"https://ror.org/00njsd438","country_code":"US","type":"funder","lineage":["https://openalex.org/I1291425158","https://openalex.org/I4210128969"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"S. Kumar","raw_affiliation_strings":["Google Research, New York, NY, USA#TAB#"],"affiliations":[{"raw_affiliation_string":"Google Research, New York, NY, USA#TAB#","institution_ids":["https://openalex.org/I1291425158"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5037340457","display_name":"Shih\u2010Fu Chang","orcid":"https://orcid.org/0000-0003-1444-1205"},"institutions":[{"id":"https://openalex.org/I78577930","display_name":"Columbia University","ror":"https://ror.org/00hj8s172","country_code":"US","type":"funder","lineage":["https://openalex.org/I78577930"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"None Shih-Fu Chang","raw_affiliation_strings":["Dept. of Electr. & Comput. Eng., Columbia Univ., New York, NY, USA"],"affiliations":[{"raw_affiliation_string":"Dept. of Electr. & Comput. Eng., Columbia Univ., New York, NY, USA","institution_ids":["https://openalex.org/I78577930"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":53.68,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":843,"citation_normalized_percentile":{"value":0.999936,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":99,"max":100},"biblio":{"volume":"34","issue":"12","first_page":"2393","last_page":"2406"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9942,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11714","display_name":"Multimodal Machine Learning Applications","score":0.9866,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/locality-sensitive-hashing","display_name":"Locality-sensitive hashing","score":0.859388},{"id":"https://openalex.org/keywords/dynamic-perfect-hashing","display_name":"Dynamic perfect hashing","score":0.67020833},{"id":"https://openalex.org/keywords/universal-hashing","display_name":"Universal hashing","score":0.629612},{"id":"https://openalex.org/keywords/feature-hashing","display_name":"Feature hashing","score":0.56822675},{"id":"https://openalex.org/keywords/overfitting","display_name":"Overfitting","score":0.5619002},{"id":"https://openalex.org/keywords/k-independent-hashing","display_name":"K-independent hashing","score":0.54616356},{"id":"https://openalex.org/keywords/linear-hashing","display_name":"Linear hashing","score":0.49256998}],"concepts":[{"id":"https://openalex.org/C74270461","wikidata":"https://www.wikidata.org/wiki/Q1625299","display_name":"Locality-sensitive hashing","level":4,"score":0.859388},{"id":"https://openalex.org/C99138194","wikidata":"https://www.wikidata.org/wiki/Q183427","display_name":"Hash function","level":2,"score":0.7075689},{"id":"https://openalex.org/C122907437","wikidata":"https://www.wikidata.org/wiki/Q5318999","display_name":"Dynamic perfect hashing","level":5,"score":0.67020833},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6560308},{"id":"https://openalex.org/C116058348","wikidata":"https://www.wikidata.org/wiki/Q846912","display_name":"Universal hashing","level":5,"score":0.629612},{"id":"https://openalex.org/C133667856","wikidata":"https://www.wikidata.org/wiki/Q5439682","display_name":"Feature hashing","level":5,"score":0.56822675},{"id":"https://openalex.org/C22019652","wikidata":"https://www.wikidata.org/wiki/Q331309","display_name":"Overfitting","level":3,"score":0.5619002},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.54890233},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.546904},{"id":"https://openalex.org/C187062812","wikidata":"https://www.wikidata.org/wiki/Q6322840","display_name":"K-independent hashing","level":5,"score":0.54616356},{"id":"https://openalex.org/C116738811","wikidata":"https://www.wikidata.org/wiki/Q608751","display_name":"Nearest neighbor search","level":2,"score":0.52871805},{"id":"https://openalex.org/C36375716","wikidata":"https://www.wikidata.org/wiki/Q6553456","display_name":"Linear hashing","level":5,"score":0.49256998},{"id":"https://openalex.org/C184898388","wikidata":"https://www.wikidata.org/wiki/Q1435712","display_name":"Pairwise comparison","level":2,"score":0.4737483},{"id":"https://openalex.org/C176217482","wikidata":"https://www.wikidata.org/wiki/Q860554","display_name":"Metric (unit)","level":2,"score":0.44908023},{"id":"https://openalex.org/C67388219","wikidata":"https://www.wikidata.org/wiki/Q207440","display_name":"Hash table","level":3,"score":0.41783974},{"id":"https://openalex.org/C138111711","wikidata":"https://www.wikidata.org/wiki/Q478351","display_name":"Double hashing","level":4,"score":0.4146074},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.34017217},{"id":"https://openalex.org/C21547014","wikidata":"https://www.wikidata.org/wiki/Q1423657","display_name":"Operations management","level":1,"score":0.0},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tpami.2012.48","pdf_url":null,"source":{"id":"https://openalex.org/S199944782","display_name":"IEEE Transactions on Pattern Analysis and Machine Intelligence","issn_l":"0162-8828","issn":["0162-8828","1939-3539","2160-9292"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320439","host_organization_name":"IEEE Computer Society","host_organization_lineage":["https://openalex.org/P4310320439","https://openalex.org/P4310319808"],"host_organization_lineage_names":["IEEE Computer Society","Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.385.2569","pdf_url":"http://www.ee.columbia.edu/ln/dvmm/publications/12/PAMI_SSHASH.pdf","source":{"id":"https://openalex.org/S4306400349","display_name":"CiteSeer X (The Pennsylvania State University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I130769515","host_organization_name":"Pennsylvania State University","host_organization_lineage":["https://openalex.org/I130769515"],"host_organization_lineage_names":["Pennsylvania State University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/22331853","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.385.2569","pdf_url":"http://www.ee.columbia.edu/ln/dvmm/publications/12/PAMI_SSHASH.pdf","source":{"id":"https://openalex.org/S4306400349","display_name":"CiteSeer X (The Pennsylvania State University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I130769515","host_organization_name":"Pennsylvania State University","host_organization_lineage":["https://openalex.org/I130769515"],"host_organization_lineage_names":["Pennsylvania State University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":42,"referenced_works":["https://openalex.org/W1491105865","https://openalex.org/W1502916507","https://openalex.org/W1566135517","https://openalex.org/W1586283311","https://openalex.org/W1627400044","https://openalex.org/W1986482242","https://openalex.org/W1988790447","https://openalex.org/W1992371516","https://openalex.org/W2007972815","https://openalex.org/W2024668293","https://openalex.org/W2044195942","https://openalex.org/W2049644877","https://openalex.org/W2053463056","https://openalex.org/W2097921974","https://openalex.org/W2099253838","https://openalex.org/W2100495367","https://openalex.org/W2104208555","https://openalex.org/W2111993661","https://openalex.org/W2116810533","https://openalex.org/W2121713321","https://openalex.org/W2122457239","https://openalex.org/W2125378448","https://openalex.org/W2130660124","https://openalex.org/W2144892774","https://openalex.org/W2145607950","https://openalex.org/W2147717514","https://openalex.org/W2148781362","https://openalex.org/W2151103935","https://openalex.org/W2154956324","https://openalex.org/W2155982529","https://openalex.org/W2162006472","https://openalex.org/W2164338181","https://openalex.org/W2165558283","https://openalex.org/W2166563371","https://openalex.org/W2170037597","https://openalex.org/W2171790913","https://openalex.org/W2251864938","https://openalex.org/W2293597654","https://openalex.org/W2397770138","https://openalex.org/W4251572646","https://openalex.org/W4252017042","https://openalex.org/W66926763"],"related_works":["https://openalex.org/W39687211","https://openalex.org/W2964752363","https://openalex.org/W2893252848","https://openalex.org/W2811247857","https://openalex.org/W2783286101","https://openalex.org/W2544145541","https://openalex.org/W2184777945","https://openalex.org/W2100189723","https://openalex.org/W2023326318","https://openalex.org/W1554555624"],"abstract_inverted_index":{"Hashing-based":[0],"approximate":[1],"nearest":[2],"neighbor":[3],"(ANN)":[4],"search":[5],"in":[6,68,155],"huge":[7],"databases":[8],"has":[9],"become":[10],"popular":[11,20],"due":[12],"to":[13,90,162,182,198],"its":[14],"computational":[15],"and":[16,27,117,125,144,214],"memory":[17],"efficiency.":[18],"The":[19,39],"hashing":[21,78,106,137,150,216],"methods,":[22,138],"e.g.,":[23],"Locality":[24],"Sensitive":[25],"Hashing":[26],"Spectral":[28],"Hashing,":[29],"construct":[30],"hash":[31,158],"functions":[32],"based":[33],"on":[34,129,193],"random":[35],"or":[36,47,97],"principal":[37],"projections.":[38],"resulting":[40],"hashes":[41],"are":[42,48,53,88,95,189],"either":[43],"not":[44],"very":[45],"accurate":[46],"inefficient.":[49],"Moreover,":[50],"these":[51],"methods":[52,79,210],"designed":[54,161],"for":[55],"a":[56,104],"given":[57,67],"metric":[58],"similarity.":[59],"On":[60],"the":[61,114,148,164,168,175,203,207],"contrary,":[62],"semantic":[63,84],"similarity":[64],"is":[65,160],"usually":[66],"terms":[69],"of":[70,73,206],"pairwise":[71],"labels":[72],"samples.":[74],"There":[75],"exist":[76],"supervised":[77,213],"that":[80,109,174],"can":[81,179],"handle":[82],"such":[83],"similarity,":[85],"but":[86],"they":[87],"prone":[89],"overfitting":[91],"when":[92],"labeled":[93,115,124,187],"data":[94],"small":[96],"noisy.":[98],"In":[99],"this":[100,130],"work,":[101],"we":[102,132],"propose":[103],"semi-supervised":[105,136],"(SSH)":[107],"framework":[108],"minimizes":[110],"empirical":[111],"error":[112],"over":[113,122,211],"set":[116],"an":[118],"information":[119],"theoretic":[120],"regularizer":[121],"both":[123],"unlabeled":[126],"sets.":[127],"Based":[128],"framework,":[131],"present":[133],"three":[134],"different":[135],"including":[139],"orthogonal":[140],"hashing,":[141,143],"nonorthogonal":[142],"sequential":[145,149,176],"hashing.":[146],"Particularly,":[147],"method":[151],"generates":[152],"robust":[153],"codes":[154],"which":[156],"each":[157],"function":[159],"correct":[163],"errors":[165],"made":[166],"by":[167],"previous":[169],"ones.":[170],"We":[171],"further":[172],"show":[173],"learning":[177],"paradigm":[178],"be":[180],"extended":[181],"unsupervised":[183,215],"domains":[184],"where":[185],"no":[186],"pairs":[188],"available.":[190],"Extensive":[191],"experiments":[192],"four":[194],"large":[195],"datasets":[196],"(up":[197],"80":[199],"million":[200],"samples)":[201],"demonstrate":[202],"superior":[204],"performance":[205],"proposed":[208],"SSH":[209],"state-of-the-art":[212],"techniques.":[217]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2074668987","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":9},{"year":2023,"cited_by_count":26},{"year":2022,"cited_by_count":41},{"year":2021,"cited_by_count":62},{"year":2020,"cited_by_count":77},{"year":2019,"cited_by_count":108},{"year":2018,"cited_by_count":98},{"year":2017,"cited_by_count":124},{"year":2016,"cited_by_count":98},{"year":2015,"cited_by_count":96},{"year":2014,"cited_by_count":56},{"year":2013,"cited_by_count":32},{"year":2012,"cited_by_count":13}],"updated_date":"2025-03-17T02:23:32.007060","created_date":"2016-06-24"}