{"id":"https://openalex.org/W4213428547","doi":"https://doi.org/10.1109/tnse.2022.3153643","title":"A Simple Yet Effective Layered Loss for Pre-Training of Network Embedding","display_name":"A Simple Yet Effective Layered Loss for Pre-Training of Network Embedding","publication_year":2022,"publication_date":"2022-02-23","ids":{"openalex":"https://openalex.org/W4213428547","doi":"https://doi.org/10.1109/tnse.2022.3153643"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tnse.2022.3153643","pdf_url":null,"source":{"id":"https://openalex.org/S2484352698","display_name":"IEEE Transactions on Network Science and Engineering","issn_l":"2327-4697","issn":["2327-4697","2334-329X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5045191293","display_name":"Junyang Chen","orcid":"https://orcid.org/0000-0002-1139-8654"},"institutions":[{"id":"https://openalex.org/I180726961","display_name":"Shenzhen University","ror":"https://ror.org/01vy4gh70","country_code":"CN","type":"funder","lineage":["https://openalex.org/I180726961"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Junyang Chen","raw_affiliation_strings":["College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China"],"affiliations":[{"raw_affiliation_string":"College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China","institution_ids":["https://openalex.org/I180726961"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100365967","display_name":"Xueliang Li","orcid":"https://orcid.org/0000-0002-8928-9933"},"institutions":[{"id":"https://openalex.org/I180726961","display_name":"Shenzhen University","ror":"https://ror.org/01vy4gh70","country_code":"CN","type":"funder","lineage":["https://openalex.org/I180726961"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xueliang Li","raw_affiliation_strings":["College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China"],"affiliations":[{"raw_affiliation_string":"College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China","institution_ids":["https://openalex.org/I180726961"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5016956860","display_name":"Yuanman Li","orcid":"https://orcid.org/0000-0003-4526-3018"},"institutions":[{"id":"https://openalex.org/I180726961","display_name":"Shenzhen University","ror":"https://ror.org/01vy4gh70","country_code":"CN","type":"funder","lineage":["https://openalex.org/I180726961"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yuanman Li","raw_affiliation_strings":["Guangdong Key Laboratory of Intelligent Information Processing, College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China"],"affiliations":[{"raw_affiliation_string":"Guangdong Key Laboratory of Intelligent Information Processing, College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China","institution_ids":["https://openalex.org/I180726961"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5066704686","display_name":"Paul Li","orcid":null},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Paul Li","raw_affiliation_strings":["Baidu Research, Sunnyvale, CA, USA"],"affiliations":[{"raw_affiliation_string":"Baidu Research, Sunnyvale, CA, USA","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5057464374","display_name":"Mengzhu Wang","orcid":"https://orcid.org/0000-0002-1059-0441"},"institutions":[{"id":"https://openalex.org/I170215575","display_name":"National University of Defense Technology","ror":"https://ror.org/05d2yfz11","country_code":"CN","type":"funder","lineage":["https://openalex.org/I170215575"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Mengzhu Wang","raw_affiliation_strings":["College of Computer, National University of Defense Technology, Changsha, China"],"affiliations":[{"raw_affiliation_string":"College of Computer, National University of Defense Technology, Changsha, China","institution_ids":["https://openalex.org/I170215575"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100368865","display_name":"Xiang Zhang","orcid":"https://orcid.org/0000-0002-5201-3802"},"institutions":[{"id":"https://openalex.org/I170215575","display_name":"National University of Defense Technology","ror":"https://ror.org/05d2yfz11","country_code":"CN","type":"funder","lineage":["https://openalex.org/I170215575"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiang Zhang","raw_affiliation_strings":["College of Computer, National University of Defense Technology, Changsha, China"],"affiliations":[{"raw_affiliation_string":"College of Computer, National University of Defense Technology, Changsha, China","institution_ids":["https://openalex.org/I170215575"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5066286956","display_name":"Zhiguo Gong","orcid":"https://orcid.org/0000-0002-4588-890X"},"institutions":[{"id":"https://openalex.org/I6469544","display_name":"City University of Macau","ror":"https://ror.org/04gpd4q15","country_code":"MO","type":"education","lineage":["https://openalex.org/I6469544"]},{"id":"https://openalex.org/I204512498","display_name":"University of Macau","ror":"https://ror.org/01r4q9n85","country_code":"MO","type":"funder","lineage":["https://openalex.org/I204512498"]}],"countries":["MO"],"is_corresponding":false,"raw_author_name":"Zhiguo Gong","raw_affiliation_strings":["State Key Laboratory of Internet of Things for Smart City, Department of Computer Information Science, University of Macau, Macau, China"],"affiliations":[{"raw_affiliation_string":"State Key Laboratory of Internet of Things for Smart City, Department of Computer Information Science, University of Macau, Macau, China","institution_ids":["https://openalex.org/I6469544","https://openalex.org/I204512498"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5001188748","display_name":"Kaishun Wu","orcid":"https://orcid.org/0000-0003-2216-0737"},"institutions":[{"id":"https://openalex.org/I180726961","display_name":"Shenzhen University","ror":"https://ror.org/01vy4gh70","country_code":"CN","type":"funder","lineage":["https://openalex.org/I180726961"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Kaishun Wu","raw_affiliation_strings":["College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China"],"affiliations":[{"raw_affiliation_string":"College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China","institution_ids":["https://openalex.org/I180726961"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5035919267","display_name":"Victor C. M. Leung","orcid":"https://orcid.org/0000-0003-3529-2640"},"institutions":[{"id":"https://openalex.org/I180726961","display_name":"Shenzhen University","ror":"https://ror.org/01vy4gh70","country_code":"CN","type":"funder","lineage":["https://openalex.org/I180726961"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Victor C. M. Leung","raw_affiliation_strings":["College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China"],"affiliations":[{"raw_affiliation_string":"College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China","institution_ids":["https://openalex.org/I180726961"]}]}],"institution_assertions":[],"countries_distinct_count":3,"institutions_distinct_count":4,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.281,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.363347,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":69,"max":75},"biblio":{"volume":"9","issue":"3","first_page":"1827","last_page":"1837"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9894,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10064","display_name":"Complex Network Analysis Techniques","score":0.978,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.5571202},{"id":"https://openalex.org/keywords/graph-embedding","display_name":"Graph Embedding","score":0.53311473},{"id":"https://openalex.org/keywords/encode","display_name":"ENCODE","score":0.5289269},{"id":"https://openalex.org/keywords/feature-learning","display_name":"Feature Learning","score":0.44161165}],"concepts":[{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.7578651},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7064646},{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.5571202},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.5368638},{"id":"https://openalex.org/C75564084","wikidata":"https://www.wikidata.org/wiki/Q5597085","display_name":"Graph embedding","level":3,"score":0.53311473},{"id":"https://openalex.org/C66746571","wikidata":"https://www.wikidata.org/wiki/Q1134833","display_name":"ENCODE","level":3,"score":0.5289269},{"id":"https://openalex.org/C62611344","wikidata":"https://www.wikidata.org/wiki/Q1062658","display_name":"Node (physics)","level":2,"score":0.5107517},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.48226124},{"id":"https://openalex.org/C59404180","wikidata":"https://www.wikidata.org/wiki/Q17013334","display_name":"Feature learning","level":2,"score":0.44161165},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.39696983},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.39453033},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.32691956},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C66938386","wikidata":"https://www.wikidata.org/wiki/Q633538","display_name":"Structural engineering","level":1,"score":0.0},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tnse.2022.3153643","pdf_url":null,"source":{"id":"https://openalex.org/S2484352698","display_name":"IEEE Transactions on Network Science and Engineering","issn_l":"2327-4697","issn":["2327-4697","2334-329X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.74,"display_name":"Reduced inequalities","id":"https://metadata.un.org/sdg/10"}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61902249"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"62001304"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"62102265"},{"funder":"https://openalex.org/F4320321655","funder_display_name":"Science and Technology Development Fund","award_id":"FDCT/0068/2020/AGJ"},{"funder":"https://openalex.org/F4320337111","funder_display_name":"Basic and Applied Basic Research Foundation of Guangdong Province","award_id":"2019A1515110410"}],"datasets":[],"versions":[],"referenced_works_count":29,"referenced_works":["https://openalex.org/W1522301498","https://openalex.org/W1614298861","https://openalex.org/W1622676895","https://openalex.org/W1888005072","https://openalex.org/W2022322548","https://openalex.org/W2052261215","https://openalex.org/W2112796928","https://openalex.org/W2118585731","https://openalex.org/W2120303002","https://openalex.org/W2162630660","https://openalex.org/W2576754561","https://openalex.org/W2604314403","https://openalex.org/W2604942799","https://openalex.org/W2788284887","https://openalex.org/W2907492528","https://openalex.org/W2911286998","https://openalex.org/W2950352474","https://openalex.org/W2951626319","https://openalex.org/W2962756421","https://openalex.org/W2962975498","https://openalex.org/W2963695795","https://openalex.org/W2964015378","https://openalex.org/W3100848837","https://openalex.org/W3104097132","https://openalex.org/W3152893301","https://openalex.org/W3169777530","https://openalex.org/W3171570542","https://openalex.org/W3172010853","https://openalex.org/W4297733535"],"related_works":["https://openalex.org/W4388405611","https://openalex.org/W3208297503","https://openalex.org/W3206528106","https://openalex.org/W3119773509","https://openalex.org/W3036264823","https://openalex.org/W2964117661","https://openalex.org/W2912814903","https://openalex.org/W2889153461","https://openalex.org/W2123605750","https://openalex.org/W2088740331"],"abstract_inverted_index":{"Pre-training":[0],"of":[1,50,69,118,161,170,181],"network":[2],"embedding":[3,64,166],"aims":[4],"to":[5,18,102,139,143,157],"encode":[6],"unlabeled":[7,71],"node":[8,42,78,87,121,136,187],"proximity":[9,117],"into":[10],"a":[11,76,96,105,119,127,130,134],"low-dimensional":[12],"space,":[13],"where":[14,133],"nodes":[15,162],"are":[16],"close":[17],"their":[19,51],"neighbors":[20,82,125],"while":[21],"being":[22],"far":[23],"from":[24],"negative":[25],"samples.":[26],"In":[27],"recent":[28],"years,":[29],"Graph":[30],"Neural":[31],"Networks":[32],"have":[33],"shown":[34],"groundbreaking":[35],"performance":[36],"in":[37,66,163],"semi-supervised":[38],"learning":[39,185],"on":[40,184],"the":[41,67,70,116,159,164,179],"classification":[43,175],"and":[44,79,122,176],"link":[45],"prediction":[46],"tasks.":[47],"However,":[48],"because":[49],"inherent":[52],"information":[53],"aggregation":[54],"pattern,":[55],"almost":[56],"all":[57],"these":[58],"methods":[59],"can":[60],"only":[61],"obtain":[62],"inferior":[63],"results":[65,169],"pre-training":[68],"nodes.":[72],"The":[73],"margins":[74,160],"between":[75],"target":[77,120,135],"its":[80,123,144,148],"multi-hop":[81],"become":[83],"hard":[84],"distinguishable":[85],"during":[86],"message":[88],"aggregation.":[89],"To":[90],"address":[91],"this":[92],"problem,":[93],"we":[94],"propose":[95],"simple":[97],"yet":[98],"effective":[99],"layered":[100],"loss":[101],"combine":[103],"with":[104],"graph":[106],"attention":[107],"network,":[108],"dubbed":[109],"as":[110,126],"LlossNet,":[111],"for":[112],"pre-training.":[113],"We":[114],"regard":[115],"two-hop":[124,149],"unit":[128,131],"(called":[129],"graph),":[132],"is":[137],"needed":[138],"be":[140,155],"more":[141],"closer":[142],"direct":[145],"neighbor":[146],"than":[147],"neighbors.":[150],"As":[151],"such,":[152],"LlossNet":[153],"would":[154],"able":[156],"preserve":[158],"learned":[165],"space.":[167],"Experimental":[168],"various":[171],"downstream":[172],"tasks":[173],"including":[174],"clustering":[177],"demonstrate":[178],"effectiveness":[180],"our":[182],"method":[183],"discriminative":[186],"representations.":[188]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4213428547","counts_by_year":[{"year":2023,"cited_by_count":2}],"updated_date":"2025-04-30T18:46:03.565792","created_date":"2022-02-25"}