{"id":"https://openalex.org/W3213412084","doi":"https://doi.org/10.1109/tnnls.2021.3124052","title":"Amortized Bayesian Model Comparison With Evidential Deep Learning","display_name":"Amortized Bayesian Model Comparison With Evidential Deep Learning","publication_year":2021,"publication_date":"2021-11-13","ids":{"openalex":"https://openalex.org/W3213412084","doi":"https://doi.org/10.1109/tnnls.2021.3124052","mag":"3213412084","pmid":"https://pubmed.ncbi.nlm.nih.gov/34767511"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tnnls.2021.3124052","pdf_url":null,"source":{"id":"https://openalex.org/S4210175523","display_name":"IEEE Transactions on Neural Networks and Learning Systems","issn_l":"2162-237X","issn":["2162-237X","2162-2388"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2004.10629","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5004723202","display_name":"Stefan T. Radev","orcid":"https://orcid.org/0000-0002-6702-9559"},"institutions":[{"id":"https://openalex.org/I223822909","display_name":"Heidelberg University","ror":"https://ror.org/038t36y30","country_code":"DE","type":"funder","lineage":["https://openalex.org/I223822909"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Stefan T. Radev","raw_affiliation_strings":["Department of Quantitative Research Methods, Heidelberg University, Heidelberg, Germany"],"affiliations":[{"raw_affiliation_string":"Department of Quantitative Research Methods, Heidelberg University, Heidelberg, Germany","institution_ids":["https://openalex.org/I223822909"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5079564540","display_name":"Marco D\u2019Alessandro","orcid":"https://orcid.org/0000-0002-3596-5780"},"institutions":[{"id":"https://openalex.org/I193223587","display_name":"University of Trento","ror":"https://ror.org/05trd4x28","country_code":"IT","type":"funder","lineage":["https://openalex.org/I193223587"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Marco D\u2019Alessandro","raw_affiliation_strings":["Department of Psychology and Cognitive Science, University of Trento, Trento, Italy"],"affiliations":[{"raw_affiliation_string":"Department of Psychology and Cognitive Science, University of Trento, Trento, Italy","institution_ids":["https://openalex.org/I193223587"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5018018859","display_name":"Ulf K. Mertens","orcid":"https://orcid.org/0000-0001-6827-0582"},"institutions":[{"id":"https://openalex.org/I223822909","display_name":"Heidelberg University","ror":"https://ror.org/038t36y30","country_code":"DE","type":"funder","lineage":["https://openalex.org/I223822909"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Ulf K. Mertens","raw_affiliation_strings":["Department of Quantitative Research Methods, Heidelberg University, Heidelberg, Germany"],"affiliations":[{"raw_affiliation_string":"Department of Quantitative Research Methods, Heidelberg University, Heidelberg, Germany","institution_ids":["https://openalex.org/I223822909"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101537102","display_name":"Andreas Vo\u00df","orcid":"https://orcid.org/0000-0002-4499-3660"},"institutions":[{"id":"https://openalex.org/I223822909","display_name":"Heidelberg University","ror":"https://ror.org/038t36y30","country_code":"DE","type":"funder","lineage":["https://openalex.org/I223822909"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Andreas Voss","raw_affiliation_strings":["Department of Quantitative Research Methods, Heidelberg University, Heidelberg, Germany"],"affiliations":[{"raw_affiliation_string":"Department of Quantitative Research Methods, Heidelberg University, Heidelberg, Germany","institution_ids":["https://openalex.org/I223822909"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5110454166","display_name":"Ullrich K\u00f6the","orcid":null},"institutions":[{"id":"https://openalex.org/I223822909","display_name":"Heidelberg University","ror":"https://ror.org/038t36y30","country_code":"DE","type":"funder","lineage":["https://openalex.org/I223822909"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Ullrich K\u00f6the","raw_affiliation_strings":["Visual Learning Laboratory, IWR, Heidelberg University, Heidelberg, Germany"],"affiliations":[{"raw_affiliation_string":"Visual Learning Laboratory, IWR, Heidelberg University, Heidelberg, Germany","institution_ids":["https://openalex.org/I223822909"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5082373943","display_name":"Paul\u2010Christian B\u00fcrkner","orcid":"https://orcid.org/0000-0001-5765-8995"},"institutions":[{"id":"https://openalex.org/I9927081","display_name":"Aalto University","ror":"https://ror.org/020hwjq30","country_code":"FI","type":"funder","lineage":["https://openalex.org/I9927081"]}],"countries":["FI"],"is_corresponding":false,"raw_author_name":"Paul-Christian B\u00fcrkner","raw_affiliation_strings":["Department of Computer Science, Aalto University, Espoo, Finland"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, Aalto University, Espoo, Finland","institution_ids":["https://openalex.org/I9927081"]}]}],"institution_assertions":[],"countries_distinct_count":3,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.105,"has_fulltext":false,"cited_by_count":22,"citation_normalized_percentile":{"value":0.999974,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":"34","issue":"8","first_page":"4903","last_page":"4917"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12814","display_name":"Gaussian Processes and Bayesian Inference","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12814","display_name":"Gaussian Processes and Bayesian Inference","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12072","display_name":"Machine Learning and Algorithms","score":0.9944,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12056","display_name":"Markov Chains and Monte Carlo Methods","score":0.9938,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/uncertainty-quantification","display_name":"Uncertainty Quantification","score":0.50278544},{"id":"https://openalex.org/keywords/approximate-bayesian-computation","display_name":"Approximate Bayesian Computation","score":0.44316477}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7413869},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.6190092},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.6162412},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6100953},{"id":"https://openalex.org/C160234255","wikidata":"https://www.wikidata.org/wiki/Q812535","display_name":"Bayesian inference","level":3,"score":0.5829984},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.5211525},{"id":"https://openalex.org/C32230216","wikidata":"https://www.wikidata.org/wiki/Q7882499","display_name":"Uncertainty quantification","level":2,"score":0.50278544},{"id":"https://openalex.org/C2780009758","wikidata":"https://www.wikidata.org/wiki/Q6804172","display_name":"Measure (data warehouse)","level":2,"score":0.4873229},{"id":"https://openalex.org/C101112237","wikidata":"https://www.wikidata.org/wiki/Q4874481","display_name":"Bayesian statistics","level":4,"score":0.4737642},{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.46647912},{"id":"https://openalex.org/C2779377595","wikidata":"https://www.wikidata.org/wiki/Q21045424","display_name":"Approximate Bayesian computation","level":3,"score":0.44316477},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3205151}],"mesh":[],"locations_count":3,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tnnls.2021.3124052","pdf_url":null,"source":{"id":"https://openalex.org/S4210175523","display_name":"IEEE Transactions on Neural Networks and Learning Systems","issn_l":"2162-237X","issn":["2162-237X","2162-2388"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2004.10629","pdf_url":"https://arxiv.org/pdf/2004.10629","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/34767511","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2004.10629","pdf_url":"https://arxiv.org/pdf/2004.10629","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320320879","funder_display_name":"Deutsche Forschungsgemeinschaft","award_id":"GRK 2277"},{"funder":"https://openalex.org/F4320323664","funder_display_name":"Teknologiateollisuuden 100-Vuotisjuhlas\u00e4\u00e4ti\u00f6","award_id":"70007503"}],"datasets":[],"versions":[],"referenced_works_count":57,"referenced_works":["https://openalex.org/W1583759330","https://openalex.org/W1677882857","https://openalex.org/W1719489212","https://openalex.org/W1946356339","https://openalex.org/W1985940938","https://openalex.org/W2013164703","https://openalex.org/W2015788805","https://openalex.org/W2016219233","https://openalex.org/W2025720061","https://openalex.org/W2026915078","https://openalex.org/W2032616735","https://openalex.org/W2045968318","https://openalex.org/W2052195764","https://openalex.org/W2059511681","https://openalex.org/W2109596721","https://openalex.org/W2131602953","https://openalex.org/W2136582516","https://openalex.org/W2136848157","https://openalex.org/W2146620998","https://openalex.org/W2146831880","https://openalex.org/W2157239334","https://openalex.org/W2158798384","https://openalex.org/W2164653071","https://openalex.org/W2502017989","https://openalex.org/W2592505114","https://openalex.org/W2600383743","https://openalex.org/W2602422862","https://openalex.org/W2605055943","https://openalex.org/W2622563070","https://openalex.org/W2739107310","https://openalex.org/W2791976732","https://openalex.org/W2806471870","https://openalex.org/W2811513716","https://openalex.org/W2909235757","https://openalex.org/W2909878113","https://openalex.org/W2922826800","https://openalex.org/W2947795716","https://openalex.org/W2948978827","https://openalex.org/W2949631852","https://openalex.org/W2950651308","https://openalex.org/W2951595529","https://openalex.org/W2962894765","https://openalex.org/W2963822196","https://openalex.org/W2972946385","https://openalex.org/W3012496101","https://openalex.org/W3013967887","https://openalex.org/W3031514878","https://openalex.org/W3102737393","https://openalex.org/W3105637242","https://openalex.org/W3123421154","https://openalex.org/W4248681815","https://openalex.org/W4288350962","https://openalex.org/W4288418124","https://openalex.org/W4297665420","https://openalex.org/W4299551239","https://openalex.org/W4299600506","https://openalex.org/W582134693"],"related_works":["https://openalex.org/W4214872087","https://openalex.org/W3049691116","https://openalex.org/W299368792","https://openalex.org/W2962900370","https://openalex.org/W2885033616","https://openalex.org/W2407375987","https://openalex.org/W2372988341","https://openalex.org/W2226294016","https://openalex.org/W2068793003","https://openalex.org/W2025423151"],"abstract_inverted_index":{"Comparing":[0],"competing":[1],"mathematical":[2],"models":[3,38,93,183,231],"of":[4,14,88,107,117,145,172,200,232,242,269],"complex":[5],"processes":[6],"is":[7,55,81,111,151,264],"a":[8,21,48,66,142,157,246,255,266],"shared":[9],"goal":[10],"among":[11],"many":[12,36,226],"branches":[13],"science.":[15],"The":[16],"Bayesian":[17,43,71],"probabilistic":[18],"framework":[19,216,256],"offers":[20],"principled":[22],"way":[23,159],"to":[24,59,96,113,138,160,249],"perform":[25],"model":[26,72,135,165,263],"comparison":[27,73,166],"and":[28,84,110,123,178,187,203,219,223],"extract":[29],"useful":[30],"metrics":[31],"for":[32,69,141],"guiding":[33],"decisions.":[34],"However,":[35],"interesting":[37],"are":[39],"intractable":[40],"with":[41,229],"standard":[42],"methods,":[44],"as":[45],"they":[46],"lack":[47],"closed-form":[49],"likelihood":[50,54],"function":[51],"or":[52],"the":[53,86,108,115,128,170,206,239,260],"computationally":[56],"too":[57],"expensive":[58],"evaluate.":[60],"In":[61],"this":[62,210],"work,":[63],"we":[64,155],"propose":[65,156],"novel":[67,158],"method":[68,80,129,174,194],"performing":[70],"using":[74],"specialized":[75],"deep":[76],"learning":[77],"architectures.":[78],"Our":[79],"purely":[82],"simulation-based":[83],"circumvents":[85],"step":[87],"explicitly":[89],"fitting":[90],"all":[91],"alternative":[92],"under":[94],"consideration":[95],"each":[97],"observed":[98],"dataset.":[99],"Moreover,":[100],"it":[101],"requires":[102],"no":[103],"hand-crafted":[104],"summary":[105],"statistics":[106],"data":[109,180],"designed":[112],"amortize":[114],"cost":[116],"simulation":[118],"over":[119],"multiple":[120],"models,":[121],"datasets,":[122,146],"dataset":[124],"sizes.":[125],"This":[126],"makes":[127],"especially":[130],"effective":[131],"in":[132,164,198,209,225,254],"scenarios":[133],"where":[134],"fit":[136],"needs":[137],"be":[139],"assessed":[140],"large":[143],"number":[144],"so":[147],"that":[148,192,214,238,259],"case-based":[149],"inference":[150,224],"practically":[152],"infeasible.":[153],"Finally,":[154],"measure":[161,241],"epistemic":[162,243],"uncertainty":[163,244],"problems.":[167],"We":[168,190,212,235],"demonstrate":[169],"utility":[171],"our":[173,193,215],"on":[175],"toy":[176],"examples":[177,207],"simulated":[179],"from":[181,184],"nontrivial":[182],"cognitive":[185],"science":[186],"single-cell":[188],"neuroscience.":[189],"show":[191],"achieves":[195],"excellent":[196],"results":[197],"terms":[199],"accuracy,":[201],"calibration,":[202],"efficiency":[204],"across":[205],"considered":[208],"work.":[211],"argue":[213,237],"can":[217],"enhance":[218],"enrich":[220],"model-based":[221],"analysis":[222],"fields":[227],"dealing":[228],"computational":[230],"natural":[233],"processes.":[234],"further":[236],"proposed":[240],"provides":[245],"unique":[247],"proxy":[248],"quantify":[250],"absolute":[251],"evidence":[252],"even":[253],"which":[257],"assumes":[258],"true":[261],"data-generating":[262],"within":[265],"finite":[267],"set":[268],"candidate":[270],"models.":[271]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3213412084","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":6},{"year":2023,"cited_by_count":8},{"year":2022,"cited_by_count":3},{"year":2021,"cited_by_count":2}],"updated_date":"2025-04-27T01:37:53.754259","created_date":"2021-11-22"}