{"id":"https://openalex.org/W3164709496","doi":"https://doi.org/10.1109/tnnls.2021.3112897","title":"Entropic Out-of-Distribution Detection: Seamless Detection of Unknown Examples","display_name":"Entropic Out-of-Distribution Detection: Seamless Detection of Unknown Examples","publication_year":2021,"publication_date":"2021-10-02","ids":{"openalex":"https://openalex.org/W3164709496","doi":"https://doi.org/10.1109/tnnls.2021.3112897","mag":"3164709496","pmid":"https://pubmed.ncbi.nlm.nih.gov/34596562"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tnnls.2021.3112897","pdf_url":null,"source":{"id":"https://openalex.org/S4210175523","display_name":"IEEE Transactions on Neural Networks and Learning Systems","issn_l":"2162-237X","issn":["2162-237X","2162-2388"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["arxiv","crossref","datacite","pubmed"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2006.04005","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5021701067","display_name":"David Mac\u00eado","orcid":"https://orcid.org/0000-0002-2527-4548"},"institutions":[],"countries":["CA"],"is_corresponding":false,"raw_author_name":"David Macedo","raw_affiliation_strings":["Montreal Institute for Learning Algorithms (MILA), Université de Montréal (UdeM), Montreal, QC, Canada"],"affiliations":[{"raw_affiliation_string":"Montreal Institute for Learning Algorithms (MILA), Université de Montréal (UdeM), Montreal, QC, Canada","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5022457755","display_name":"Tsang Ing Ren","orcid":"https://orcid.org/0000-0002-3677-0264"},"institutions":[{"id":"https://openalex.org/I25112270","display_name":"Universidade Federal de Pernambuco","ror":"https://ror.org/047908t24","country_code":"BR","type":"education","lineage":["https://openalex.org/I25112270"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Tsang Ing Ren","raw_affiliation_strings":["Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil"],"affiliations":[{"raw_affiliation_string":"Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil","institution_ids":["https://openalex.org/I25112270"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5086345001","display_name":"Cleber Zanchettin","orcid":"https://orcid.org/0000-0001-6421-9747"},"institutions":[{"id":"https://openalex.org/I25112270","display_name":"Universidade Federal de Pernambuco","ror":"https://ror.org/047908t24","country_code":"BR","type":"education","lineage":["https://openalex.org/I25112270"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Cleber Zanchettin","raw_affiliation_strings":["Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil"],"affiliations":[{"raw_affiliation_string":"Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil","institution_ids":["https://openalex.org/I25112270"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100615438","display_name":"Adriano L. I. Oliveira","orcid":"https://orcid.org/0000-0002-5614-229X"},"institutions":[{"id":"https://openalex.org/I25112270","display_name":"Universidade Federal de Pernambuco","ror":"https://ror.org/047908t24","country_code":"BR","type":"education","lineage":["https://openalex.org/I25112270"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Adriano L. I. Oliveira","raw_affiliation_strings":["Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil"],"affiliations":[{"raw_affiliation_string":"Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil","institution_ids":["https://openalex.org/I25112270"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5025550530","display_name":"Teresa B. Ludermir","orcid":"https://orcid.org/0000-0002-8980-6742"},"institutions":[{"id":"https://openalex.org/I25112270","display_name":"Universidade Federal de Pernambuco","ror":"https://ror.org/047908t24","country_code":"BR","type":"education","lineage":["https://openalex.org/I25112270"]}],"countries":["BR"],"is_corresponding":false,"raw_author_name":"Teresa Ludermir","raw_affiliation_strings":["Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil"],"affiliations":[{"raw_affiliation_string":"Centro de Informática, Universidade Federal de Pernambuco, Recife, Brazil","institution_ids":["https://openalex.org/I25112270"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.893,"has_fulltext":false,"cited_by_count":17,"citation_normalized_percentile":{"value":0.684384,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":92,"max":93},"biblio":{"volume":"33","issue":"6","first_page":"2350","last_page":"2364"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9973,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/softmax-function","display_name":"Softmax function","score":0.95054364},{"id":"https://openalex.org/keywords/hyperparameter","display_name":"Hyperparameter","score":0.42035675}],"concepts":[{"id":"https://openalex.org/C188441871","wikidata":"https://www.wikidata.org/wiki/Q7554146","display_name":"Softmax function","level":3,"score":0.95054364},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.65642816},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.53694415},{"id":"https://openalex.org/C106301342","wikidata":"https://www.wikidata.org/wiki/Q4117933","display_name":"Entropy (arrow of time)","level":2,"score":0.47960222},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.46467596},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.46224096},{"id":"https://openalex.org/C79337645","wikidata":"https://www.wikidata.org/wiki/Q779824","display_name":"Outlier","level":2,"score":0.4585701},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.4231193},{"id":"https://openalex.org/C9679016","wikidata":"https://www.wikidata.org/wiki/Q1417473","display_name":"Principle of maximum entropy","level":2,"score":0.42294565},{"id":"https://openalex.org/C8642999","wikidata":"https://www.wikidata.org/wiki/Q4171168","display_name":"Hyperparameter","level":2,"score":0.42035675},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[{"descriptor_ui":"D016571","descriptor_name":"Neural Networks, Computer","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D034941","descriptor_name":"Upper Extremity","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D019277","descriptor_name":"Entropy","qualifier_ui":"","qualifier_name":null,"is_major_topic":false}],"locations_count":4,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tnnls.2021.3112897","pdf_url":null,"source":{"id":"https://openalex.org/S4210175523","display_name":"IEEE Transactions on Neural Networks and Learning Systems","issn_l":"2162-237X","issn":["2162-237X","2162-2388"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2006.04005","pdf_url":"https://arxiv.org/pdf/2006.04005","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/34596562","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2006.04005","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2006.04005","pdf_url":"https://arxiv.org/pdf/2006.04005","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/7","score":0.8,"display_name":"Affordable and clean energy"}],"grants":[],"datasets":[],"versions":["https://openalex.org/W3164709496"],"referenced_works_count":89,"referenced_works":["https://openalex.org/W1533861849","https://openalex.org/W1606163382","https://openalex.org/W1677182931","https://openalex.org/W1917989004","https://openalex.org/W1953521701","https://openalex.org/W1995875735","https://openalex.org/W2015563892","https://openalex.org/W2018459374","https://openalex.org/W2019494951","https://openalex.org/W2032558547","https://openalex.org/W2096175520","https://openalex.org/W2096733369","https://openalex.org/W2099111195","https://openalex.org/W2108598243","https://openalex.org/W2119880843","https://openalex.org/W2122646361","https://openalex.org/W2144172034","https://openalex.org/W2157331557","https://openalex.org/W2159080219","https://openalex.org/W2183341477","https://openalex.org/W2277677466","https://openalex.org/W2302255633","https://openalex.org/W2318485605","https://openalex.org/W2335728318","https://openalex.org/W2478708596","https://openalex.org/W2503194399","https://openalex.org/W2520774990","https://openalex.org/W2531327146","https://openalex.org/W2538160991","https://openalex.org/W2581377246","https://openalex.org/W2600383743","https://openalex.org/W2601450892","https://openalex.org/W2626967530","https://openalex.org/W2737498590","https://openalex.org/W2767414122","https://openalex.org/W2786712888","https://openalex.org/W2788907134","https://openalex.org/W2810469995","https://openalex.org/W2867167548","https://openalex.org/W2889625178","https://openalex.org/W2890884881","https://openalex.org/W2892035828","https://openalex.org/W2904981516","https://openalex.org/W2913848079","https://openalex.org/W2950787360","https://openalex.org/W2951852399","https://openalex.org/W2951883849","https://openalex.org/W2951965145","https://openalex.org/W2952140516","https://openalex.org/W2963081736","https://openalex.org/W2963215553","https://openalex.org/W2963238274","https://openalex.org/W2963446712","https://openalex.org/W2963656735","https://openalex.org/W2963693742","https://openalex.org/W2963995504","https://openalex.org/W2964212410","https://openalex.org/W2969985801","https://openalex.org/W2970121940","https://openalex.org/W2970317235","https://openalex.org/W2990064013","https://openalex.org/W2992308087","https://openalex.org/W2996564870","https://openalex.org/W3006853338","https://openalex.org/W3011927872","https://openalex.org/W3020972252","https://openalex.org/W3034230713","https://openalex.org/W3034370310","https://openalex.org/W3039726358","https://openalex.org/W3041148953","https://openalex.org/W3043138801","https://openalex.org/W3092527263","https://openalex.org/W3099206234","https://openalex.org/W3102616566","https://openalex.org/W3103152812","https://openalex.org/W3104110041","https://openalex.org/W3108123919","https://openalex.org/W3109684201","https://openalex.org/W3118608800","https://openalex.org/W3135550350","https://openalex.org/W3199390827","https://openalex.org/W3214897310","https://openalex.org/W4252028749","https://openalex.org/W4288363925","https://openalex.org/W4288796004","https://openalex.org/W4297798436","https://openalex.org/W572355794","https://openalex.org/W596488402","https://openalex.org/W967544008"],"related_works":["https://openalex.org/W4287591324","https://openalex.org/W4226420367","https://openalex.org/W3108503355","https://openalex.org/W3107204728","https://openalex.org/W3090555870","https://openalex.org/W3041490575","https://openalex.org/W2980176872","https://openalex.org/W2970690932","https://openalex.org/W2962876041","https://openalex.org/W2249953602"],"abstract_inverted_index":{"In":[0],"this":[1],"article,":[2],"we":[3,87],"argue":[4],"that":[5,97,186,197],"the":[6,19,34,40,52,84,102,121,134],"unsatisfactory":[7],"out-of-distribution":[8],"(OOD)":[9],"detection":[10,45,203,214,224],"performance":[11],"of":[12,36],"neural":[13,200],"networks":[14],"is":[15,109,157],"mainly":[16],"due":[17],"to":[18,25,60,216,226],"SoftMax":[20,53,90,122,150,193],"loss":[21,54,91,95,108,123,126,139,188,194],"anisotropy":[22],"and":[23,79,113,143],"propensity":[24],"produce":[26,67,140],"low":[27],"entropy":[28,116],"probability":[29,118],"distributions":[30],"in":[31],"disagreement":[32],"with":[33,92,137,219],"principle":[35],"maximum":[37],"entropy.":[38],"On":[39,83],"one":[41],"hand,":[42,86],"current":[43,220],"OOD":[44,202,213,223],"approaches":[46],"usually":[47,66],"do":[48],"not":[49,99,163],"directly":[50],"fix":[51],"drawbacks,":[55],"but":[56],"rather":[57],"build":[58],"techniques":[59,225],"circumvent":[61],"it.":[62],"Unfortunately,":[63],"those":[64,147],"methods":[65],"undesired":[68],"side":[69],"effects":[70],"(e.g.,":[71],"classification":[72,154],"accuracy":[73,155],"drop,":[74],"additional":[75],"hyperparameters,":[76],"slower":[77],"inferences,":[78],"collecting":[80],"extra":[81],"data).":[82],"other":[85],"propose":[88],"replacing":[89],"a":[93,191,211],"novel":[94],"function":[96],"does":[98,162],"suffer":[100],"from":[101],"mentioned":[103],"weaknesses.":[104],"The":[105,159],"proposed":[106,160],"IsoMax":[107,125,138,187],"isotropic":[110],"(exclusively":[111],"distance-based)":[112],"provides":[114],"high":[115],"posterior":[117],"distributions.":[119],"Replacing":[120],"by":[124],"requires":[127],"no":[128,153],"model":[129],"or":[130,180,221],"training":[131],"changes.":[132],"Additionally,":[133],"models":[135],"trained":[136,148],"as":[141,146,190,210],"fast":[142],"energy-efficient":[144],"inferences":[145],"using":[149],"loss.":[151],"Moreover,":[152],"drop":[156],"observed.":[158],"method":[161],"rely":[164],"on":[165],"outlier/background":[166],"data,":[167],"hyperparameter":[168],"tuning,":[169],"temperature":[170],"calibration,":[171],"feature":[172],"extraction,":[173],"metric":[174],"learning,":[175],"adversarial":[176],"training,":[177],"ensemble":[178],"procedures,":[179],"generative":[181],"models.":[182],"Our":[183],"experiments":[184],"showed":[185],"works":[189],"seamless":[192],"drop-in":[195],"replacement":[196],"significantly":[198],"improves":[199],"networks'":[201],"performance.":[204],"Hence,":[205],"it":[206],"may":[207],"be":[208,217],"used":[209],"baseline":[212],"approach":[215],"combined":[218],"future":[222],"achieve":[227],"even":[228],"higher":[229],"results.":[230]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3164709496","counts_by_year":[{"year":2024,"cited_by_count":7},{"year":2023,"cited_by_count":6},{"year":2022,"cited_by_count":4}],"updated_date":"2025-01-17T13:04:13.526746","created_date":"2021-06-07"}