{"id":"https://openalex.org/W2985199329","doi":"https://doi.org/10.1109/tnnls.2019.2948797","title":"GrAMME: Semisupervised Learning Using Multilayered Graph Attention Models","display_name":"GrAMME: Semisupervised Learning Using Multilayered Graph Attention Models","publication_year":2019,"publication_date":"2019-11-14","ids":{"openalex":"https://openalex.org/W2985199329","doi":"https://doi.org/10.1109/tnnls.2019.2948797","mag":"2985199329","pmid":"https://pubmed.ncbi.nlm.nih.gov/31725400"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tnnls.2019.2948797","pdf_url":null,"source":{"id":"https://openalex.org/S4210175523","display_name":"IEEE Transactions on Neural Networks and Learning Systems","issn_l":"2162-237X","issn":["2162-237X","2162-2388"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://www.osti.gov/biblio/1734985","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5073341075","display_name":"Uday Shankar Shanthamallu","orcid":"https://orcid.org/0000-0002-3848-7761"},"institutions":[{"id":"https://openalex.org/I55732556","display_name":"Arizona State University","ror":"https://ror.org/03efmqc40","country_code":"US","type":"funder","lineage":["https://openalex.org/I55732556"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Uday Shankar Shanthamallu","raw_affiliation_strings":["Sensor Signal and Information Processing (SenSIP) Center, School of Electrical, Computer and Energy Engineering (ECEE), Arizona State University, Tempe, AZ, USA"],"affiliations":[{"raw_affiliation_string":"Sensor Signal and Information Processing (SenSIP) Center, School of Electrical, Computer and Energy Engineering (ECEE), Arizona State University, Tempe, AZ, USA","institution_ids":["https://openalex.org/I55732556"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5046632395","display_name":"Jayaraman J. Thiagarajan","orcid":"https://orcid.org/0000-0002-8517-5816"},"institutions":[{"id":"https://openalex.org/I1282311441","display_name":"Lawrence Livermore National Laboratory","ror":"https://ror.org/041nk4h53","country_code":"US","type":"funder","lineage":["https://openalex.org/I1282311441","https://openalex.org/I1330989302","https://openalex.org/I198811213","https://openalex.org/I4210138311"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jayaraman J. Thiagarajan","raw_affiliation_strings":["Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA, USA"],"affiliations":[{"raw_affiliation_string":"Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA, USA","institution_ids":["https://openalex.org/I1282311441"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101697214","display_name":"Huan Song","orcid":"https://orcid.org/0000-0002-9639-9962"},"institutions":[{"id":"https://openalex.org/I4210120115","display_name":"Robert Bosch (United States)","ror":"https://ror.org/02venad53","country_code":"US","type":"funder","lineage":["https://openalex.org/I4210120115","https://openalex.org/I889804353"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Huan Song","raw_affiliation_strings":["Bosch Research North America, Sunnyvale, CA, USA"],"affiliations":[{"raw_affiliation_string":"Bosch Research North America, Sunnyvale, CA, USA","institution_ids":["https://openalex.org/I4210120115"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5074371899","display_name":"Andreas Spanias","orcid":"https://orcid.org/0000-0003-0306-9348"},"institutions":[{"id":"https://openalex.org/I55732556","display_name":"Arizona State University","ror":"https://ror.org/03efmqc40","country_code":"US","type":"funder","lineage":["https://openalex.org/I55732556"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Andreas Spanias","raw_affiliation_strings":["Sensor Signal and Information Processing (SenSIP) Center, School of Electrical, Computer and Energy Engineering (ECEE), Arizona State University, Tempe, AZ, USA"],"affiliations":[{"raw_affiliation_string":"Sensor Signal and Information Processing (SenSIP) Center, School of Electrical, Computer and Energy Engineering (ECEE), Arizona State University, Tempe, AZ, USA","institution_ids":["https://openalex.org/I55732556"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":3.519,"has_fulltext":false,"cited_by_count":38,"citation_normalized_percentile":{"value":0.999973,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":"31","issue":"10","first_page":"3977","last_page":"3988"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10064","display_name":"Complex Network Analysis Techniques","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10887","display_name":"Bioinformatics and Genomic Networks","score":0.9766,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature-learning","display_name":"Feature Learning","score":0.567729},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.49391776},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.49158058},{"id":"https://openalex.org/keywords/empirical-research","display_name":"Empirical Research","score":0.417198}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.72913575},{"id":"https://openalex.org/C165696696","wikidata":"https://www.wikidata.org/wiki/Q11287","display_name":"Exploit","level":2,"score":0.68334186},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.5677325},{"id":"https://openalex.org/C59404180","wikidata":"https://www.wikidata.org/wiki/Q17013334","display_name":"Feature learning","level":2,"score":0.567729},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.56448466},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.5278026},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.49391776},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.49158058},{"id":"https://openalex.org/C47458327","wikidata":"https://www.wikidata.org/wiki/Q910404","display_name":"Random graph","level":3,"score":0.49110603},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.49095705},{"id":"https://openalex.org/C62611344","wikidata":"https://www.wikidata.org/wiki/Q1062658","display_name":"Node (physics)","level":2,"score":0.47539175},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4354267},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.4286512},{"id":"https://openalex.org/C120936955","wikidata":"https://www.wikidata.org/wiki/Q2155640","display_name":"Empirical research","level":2,"score":0.417198},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.14946797},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C66938386","wikidata":"https://www.wikidata.org/wiki/Q633538","display_name":"Structural engineering","level":1,"score":0.0},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0}],"mesh":[],"locations_count":4,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tnnls.2019.2948797","pdf_url":null,"source":{"id":"https://openalex.org/S4210175523","display_name":"IEEE Transactions on Neural Networks and Learning Systems","issn_l":"2162-237X","issn":["2162-237X","2162-2388"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://www.osti.gov/biblio/1734985","pdf_url":null,"source":{"id":"https://openalex.org/S4306402487","display_name":"OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I139351228","host_organization_name":"Office of Scientific and Technical Information","host_organization_lineage":["https://openalex.org/I139351228"],"host_organization_lineage_names":["Office of Scientific and Technical Information"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1810.01405","pdf_url":"https://arxiv.org/pdf/1810.01405","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/31725400","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://www.osti.gov/biblio/1734985","pdf_url":null,"source":{"id":"https://openalex.org/S4306402487","display_name":"OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I139351228","host_organization_name":"Office of Scientific and Technical Information","host_organization_lineage":["https://openalex.org/I139351228"],"host_organization_lineage_names":["Office of Scientific and Technical Information"],"type":"repository"},"license":"other-oa","license_id":"https://openalex.org/licenses/other-oa","version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/9","score":0.46,"display_name":"Industry, innovation and infrastructure"}],"grants":[{"funder":"https://openalex.org/F4320309835","funder_display_name":"Arizona State University","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":67,"referenced_works":["https://openalex.org/W1501856433","https://openalex.org/W1655843738","https://openalex.org/W1662382123","https://openalex.org/W1888005072","https://openalex.org/W2004843357","https://openalex.org/W2015953751","https://openalex.org/W2024082504","https://openalex.org/W2059861509","https://openalex.org/W2074617510","https://openalex.org/W2080161383","https://openalex.org/W2088162437","https://openalex.org/W2101491865","https://openalex.org/W2113573459","https://openalex.org/W2116341502","https://openalex.org/W2120904649","https://openalex.org/W2126430683","https://openalex.org/W2127827747","https://openalex.org/W2142535891","https://openalex.org/W2143554828","https://openalex.org/W2146406922","https://openalex.org/W2153579005","https://openalex.org/W2165874743","https://openalex.org/W2166681504","https://openalex.org/W2186878252","https://openalex.org/W2295258851","https://openalex.org/W2343820143","https://openalex.org/W2519887557","https://openalex.org/W2537105955","https://openalex.org/W2557241859","https://openalex.org/W2573426660","https://openalex.org/W2577326063","https://openalex.org/W2583682297","https://openalex.org/W2601324753","https://openalex.org/W2607834493","https://openalex.org/W2737189289","https://openalex.org/W2744216160","https://openalex.org/W2763633631","https://openalex.org/W2767989436","https://openalex.org/W2788512147","https://openalex.org/W2797105966","https://openalex.org/W2801116648","https://openalex.org/W2808361044","https://openalex.org/W2882319491","https://openalex.org/W2920479739","https://openalex.org/W2951270686","https://openalex.org/W2952095700","https://openalex.org/W2962756421","https://openalex.org/W2963104673","https://openalex.org/W2963127791","https://openalex.org/W2963403868","https://openalex.org/W2963532813","https://openalex.org/W2963631431","https://openalex.org/W2963757395","https://openalex.org/W2963858333","https://openalex.org/W2964015378","https://openalex.org/W2964113829","https://openalex.org/W2964145825","https://openalex.org/W2964211259","https://openalex.org/W2964311892","https://openalex.org/W2964321699","https://openalex.org/W3100948281","https://openalex.org/W3104097132","https://openalex.org/W3120740533","https://openalex.org/W4294170691","https://openalex.org/W4297733535","https://openalex.org/W4385245566","https://openalex.org/W637153065"],"related_works":["https://openalex.org/W4312814274","https://openalex.org/W4285370786","https://openalex.org/W3207760230","https://openalex.org/W2536018345","https://openalex.org/W2358353312","https://openalex.org/W2353836703","https://openalex.org/W2296488620","https://openalex.org/W17155033","https://openalex.org/W1590307681","https://openalex.org/W1496222301"],"abstract_inverted_index":{"Modern":[0],"data":[1,160],"analysis":[2],"pipelines":[3],"are":[4,18,100,200],"becoming":[5],"increasingly":[6],"complex":[7,22],"due":[8],"to":[9,33,48,69,128],"the":[10,54,78,86,146,164,175],"presence":[11],"of":[12,88],"multiview":[13],"information":[14],"sources.":[15],"While":[16],"graphs":[17,41],"effective":[19,133,191],"in":[20,24,77,172,194],"modeling":[21],"relationships,":[23],"many":[25],"scenarios,":[26],"a":[27,63],"single":[28],"graph":[29,116,152],"is":[30,57,62,189],"rarely":[31],"sufficient":[32],"succinctly":[34],"represent":[35],"all":[36],"interactions,":[37],"and":[38,136,142,167],"hence,":[39],"multilayered":[40,79,92,151],"have":[42],"become":[43],"popular.":[44],"Though":[45,94],"this":[46,82,124],"leads":[47],"richer":[49],"representations,":[50],"extending":[51],"solutions":[52,68],"from":[53],"single-graph":[55],"case":[56],"not":[58,201],"straightforward.":[59],"Consequently,":[60],"there":[61],"strong":[64],"need":[65],"for":[66,103,132,149],"novel":[67,139],"solve":[70],"classical":[71],"problems,":[72],"such":[73],"as":[74],"node":[75,113,198],"classification,":[76],"case.":[80],"In":[81],"article,":[83],"we":[84,106,126,162],"consider":[85],"problem":[87],"semisupervised":[89],"learning":[90,110,135],"with":[91,111,174],"graphs.":[93],"deep":[95],"network":[96,177],"embeddings,":[97],"e.g.,":[98],"DeepWalk,":[99],"widely":[101],"adopted":[102],"community":[104],"discovery,":[105],"argue":[107],"that":[108,144,184],"feature":[109,134],"random":[112,187],"attributes,":[114],"using":[115,185],"neural":[117],"networks,":[118],"can":[119],"be":[120],"more":[121],"effective.":[122],"To":[123],"end,":[125],"propose":[127],"use":[129],"attention":[130],"models":[131],"develop":[137],"two":[138],"architectures,":[140],"GrAMME-SG":[141],"GrAMME-Fusion,":[143],"exploit":[145],"interlayer":[147],"dependences":[148],"building":[150],"embeddings.":[153],"Using":[154],"empirical":[155],"studies":[156],"on":[157],"several":[158],"benchmark":[159],"sets,":[161],"evaluate":[163],"proposed":[165],"approaches":[166],"demonstrate":[168],"significant":[169],"performance":[170],"improvements":[171],"comparison":[173],"state-of-the-art":[176],"embedding":[178],"strategies.":[179],"The":[180],"results":[181],"also":[182],"show":[183],"simple":[186],"features":[188],"an":[190],"choice,":[192],"even":[193],"cases":[195],"where":[196],"explicit":[197],"attributes":[199],"available.":[202]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2985199329","counts_by_year":[{"year":2024,"cited_by_count":4},{"year":2023,"cited_by_count":8},{"year":2022,"cited_by_count":10},{"year":2021,"cited_by_count":4},{"year":2020,"cited_by_count":8},{"year":2019,"cited_by_count":3}],"updated_date":"2025-04-18T20:01:04.561640","created_date":"2019-11-22"}