{"id":"https://openalex.org/W2804454015","doi":"https://doi.org/10.1109/tnnls.2018.2830761","title":"Pairwise Constraint Propagation-Induced Symmetric Nonnegative Matrix Factorization","display_name":"Pairwise Constraint Propagation-Induced Symmetric Nonnegative Matrix Factorization","publication_year":2018,"publication_date":"2018-05-18","ids":{"openalex":"https://openalex.org/W2804454015","doi":"https://doi.org/10.1109/tnnls.2018.2830761","mag":"2804454015","pmid":"https://pubmed.ncbi.nlm.nih.gov/29994550"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tnnls.2018.2830761","pdf_url":null,"source":{"id":"https://openalex.org/S4210175523","display_name":"IEEE Transactions on Neural Networks and Learning Systems","issn_l":"2162-237X","issn":["2162-237X","2162-2388"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5081114494","display_name":"Wenhui Wu","orcid":"https://orcid.org/0000-0002-0416-7719"},"institutions":[{"id":"https://openalex.org/I168719708","display_name":"City University of Hong Kong","ror":"https://ror.org/03q8dnn23","country_code":"HK","type":"funder","lineage":["https://openalex.org/I168719708"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Wenhui Wu","raw_affiliation_strings":["Department of Computer Science, City University of Hong Kong, Hong Kong"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, City University of Hong Kong, Hong Kong","institution_ids":["https://openalex.org/I168719708"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5013880628","display_name":"Yuheng Jia","orcid":"https://orcid.org/0000-0002-3907-6550"},"institutions":[{"id":"https://openalex.org/I168719708","display_name":"City University of Hong Kong","ror":"https://ror.org/03q8dnn23","country_code":"HK","type":"funder","lineage":["https://openalex.org/I168719708"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Yuheng Jia","raw_affiliation_strings":["Department of Computer Science, City University of Hong Kong, Hong Kong"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, City University of Hong Kong, Hong Kong","institution_ids":["https://openalex.org/I168719708"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5008386708","display_name":"Sam Kwong","orcid":null},"institutions":[{"id":"https://openalex.org/I168719708","display_name":"City University of Hong Kong","ror":"https://ror.org/03q8dnn23","country_code":"HK","type":"funder","lineage":["https://openalex.org/I168719708"]},{"id":"https://openalex.org/I4210105229","display_name":"City University of Hong Kong, Shenzhen Research Institute","ror":"https://ror.org/00xc0ma20","country_code":"CN","type":"funder","lineage":["https://openalex.org/I4210105229"]}],"countries":["CN","HK"],"is_corresponding":false,"raw_author_name":"Sam Kwong","raw_affiliation_strings":["City University of Hong Kong Shenzhen Research Institute, Shenzhen, China"],"affiliations":[{"raw_affiliation_string":"City University of Hong Kong Shenzhen Research Institute, Shenzhen, China","institution_ids":["https://openalex.org/I168719708","https://openalex.org/I4210105229"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5031957432","display_name":"Junhui Hou","orcid":"https://orcid.org/0000-0003-3431-2021"},"institutions":[{"id":"https://openalex.org/I168719708","display_name":"City University of Hong Kong","ror":"https://ror.org/03q8dnn23","country_code":"HK","type":"funder","lineage":["https://openalex.org/I168719708"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Junhui Hou","raw_affiliation_strings":["Department of Computer Science, City University of Hong Kong, Hong Kong"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, City University of Hong Kong, Hong Kong","institution_ids":["https://openalex.org/I168719708"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":4.706,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":69,"citation_normalized_percentile":{"value":0.99994,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":"29","issue":"12","first_page":"6348","last_page":"6361"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9938,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9938,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9893,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10824","display_name":"Image Retrieval and Classification Techniques","score":0.9887,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/non-negative-matrix-factorization","display_name":"Non-negative Matrix Factorization","score":0.8415587},{"id":"https://openalex.org/keywords/initialization","display_name":"Initialization","score":0.6082298},{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.44806752},{"id":"https://openalex.org/keywords/matrix","display_name":"Matrix (chemical analysis)","score":0.44331658}],"concepts":[{"id":"https://openalex.org/C152671427","wikidata":"https://www.wikidata.org/wiki/Q10843505","display_name":"Non-negative matrix factorization","level":4,"score":0.8415587},{"id":"https://openalex.org/C184898388","wikidata":"https://www.wikidata.org/wiki/Q1435712","display_name":"Pairwise comparison","level":2,"score":0.63656646},{"id":"https://openalex.org/C114466953","wikidata":"https://www.wikidata.org/wiki/Q6034165","display_name":"Initialization","level":2,"score":0.6082298},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.53810465},{"id":"https://openalex.org/C42355184","wikidata":"https://www.wikidata.org/wiki/Q1361088","display_name":"Matrix decomposition","level":3,"score":0.50339645},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.49468848},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.44806752},{"id":"https://openalex.org/C106487976","wikidata":"https://www.wikidata.org/wiki/Q685816","display_name":"Matrix (chemical analysis)","level":2,"score":0.44331658},{"id":"https://openalex.org/C2776036281","wikidata":"https://www.wikidata.org/wiki/Q48769818","display_name":"Constraint (computer-aided design)","level":2,"score":0.42267126},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.3749798},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3663482},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.35750225},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.3571825},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.35143387},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.22903484},{"id":"https://openalex.org/C158693339","wikidata":"https://www.wikidata.org/wiki/Q190524","display_name":"Eigenvalues and eigenvectors","level":2,"score":0.10141036},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tnnls.2018.2830761","pdf_url":null,"source":{"id":"https://openalex.org/S4210175523","display_name":"IEEE Transactions on Neural Networks and Learning Systems","issn_l":"2162-237X","issn":["2162-237X","2162-2388"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/29994550","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61672443"}],"datasets":[],"versions":[],"referenced_works_count":71,"referenced_works":["https://openalex.org/W1084418525","https://openalex.org/W1501500081","https://openalex.org/W1504886279","https://openalex.org/W1587285176","https://openalex.org/W1875623881","https://openalex.org/W1878611151","https://openalex.org/W1902027874","https://openalex.org/W191001584","https://openalex.org/W1964412262","https://openalex.org/W1966286510","https://openalex.org/W1968970305","https://openalex.org/W1977556410","https://openalex.org/W1994292689","https://openalex.org/W1995450389","https://openalex.org/W2001141328","https://openalex.org/W2006793117","https://openalex.org/W2007042673","https://openalex.org/W2013029404","https://openalex.org/W2019564823","https://openalex.org/W2023640363","https://openalex.org/W2027922120","https://openalex.org/W2043545458","https://openalex.org/W2049633694","https://openalex.org/W2050601254","https://openalex.org/W2053186076","https://openalex.org/W2053913299","https://openalex.org/W2067191022","https://openalex.org/W2069323107","https://openalex.org/W2076398700","https://openalex.org/W2083620785","https://openalex.org/W2089391273","https://openalex.org/W2090668741","https://openalex.org/W2098946845","https://openalex.org/W2099779699","https://openalex.org/W2101139104","https://openalex.org/W2103788722","https://openalex.org/W2104819583","https://openalex.org/W2105431676","https://openalex.org/W2108119513","https://openalex.org/W2117110810","https://openalex.org/W2117154319","https://openalex.org/W2117920736","https://openalex.org/W2118718620","https://openalex.org/W2120337563","https://openalex.org/W2123921160","https://openalex.org/W2124890708","https://openalex.org/W2125027820","https://openalex.org/W2132538571","https://openalex.org/W2135029798","https://openalex.org/W2137477262","https://openalex.org/W2142584058","https://openalex.org/W2142621404","https://openalex.org/W2144359569","https://openalex.org/W2144719328","https://openalex.org/W2145725490","https://openalex.org/W2154455818","https://openalex.org/W2156718197","https://openalex.org/W2160419739","https://openalex.org/W2165685007","https://openalex.org/W2166049352","https://openalex.org/W2168103112","https://openalex.org/W2178697489","https://openalex.org/W2217442075","https://openalex.org/W2527187792","https://openalex.org/W2571268788","https://openalex.org/W2782630728","https://openalex.org/W3100648197","https://openalex.org/W3143596294","https://openalex.org/W3583549","https://openalex.org/W4285719527","https://openalex.org/W57158167"],"related_works":["https://openalex.org/W3023185158","https://openalex.org/W2338894643","https://openalex.org/W2130715307","https://openalex.org/W2127243424","https://openalex.org/W2101428145","https://openalex.org/W2055537285","https://openalex.org/W2003780581","https://openalex.org/W2002519017","https://openalex.org/W1914599625","https://openalex.org/W1538254361"],"abstract_inverted_index":{"As":[0],"a":[1,55,69,88,103],"variant":[2],"of":[3,76,91,97,110],"nonnegative":[4],"matrix":[5,39],"factorization":[6],"(NMF),":[7],"symmetric":[8],"NMF":[9],"(SNMF)":[10],"has":[11],"shown":[12],"to":[13,28,46,106,122,137,161],"be":[14],"effective":[15],"for":[16],"capturing":[17],"the":[18,23,29,37,43,47,78,95,108,111,115,139,170],"cluster":[19],"structure":[20],"embedded":[21],"in":[22,50,86,94,102],"graph":[24],"representation.":[25],"In":[26,128],"contrast":[27],"existing":[30],"SNMF-based":[31,57],"clustering":[32,59,166],"methods":[33],"that":[34,156],"empirically":[35],"construct":[36],"similarity":[38,79,112],"and":[40,80,84,114,163],"rigidly":[41],"introduce":[42],"supervisory":[44,92],"information":[45,93],"assignment":[48,81],"matrix,":[49,113],"this":[51],"paper,":[52],"we":[53,130],"propose":[54,131],"novel":[56],"semisupervised":[58],"method,":[60],"namely,":[61],"pairwise":[62,98],"constraint":[63],"propagation-induced":[64],"SNMF":[65],"(PCPSNMF).":[66],"By":[67],"formulating":[68],"single-constrained":[70],"optimization":[71,140],"problem,":[72,141],"PCPSNMF":[73,157],"is":[74,100,144,158],"capable":[75],"learning":[77],"matrices":[82,117],"adaptively":[83],"simultaneously,":[85],"which":[87],"small":[89],"amount":[90],"form":[96],"constraints":[99],"introduced":[101],"flexible":[104],"way":[105],"guide":[107],"construction":[109],"two":[116],"communicate":[118],"with":[119,169],"each":[120],"other":[121],"achieve":[123],"mutual":[124],"refinement":[125],"until":[126],"convergence.":[127],"addition,":[129],"an":[132],"efficient":[133],"alternating":[134],"iterative":[135],"algorithm":[136],"solve":[138],"whose":[142],"convergence":[143],"theoretically":[145],"proven.":[146],"Experimental":[147],"results":[148],"over":[149],"several":[150],"benchmark":[151],"image":[152],"data":[153],"sets":[154],"demonstrate":[155],"less":[159],"sensitive":[160],"initialization":[162],"produces":[164],"higher":[165],"performance,":[167],"compared":[168],"state-of-the-art":[171],"methods.":[172]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2804454015","counts_by_year":[{"year":2025,"cited_by_count":3},{"year":2024,"cited_by_count":8},{"year":2023,"cited_by_count":8},{"year":2022,"cited_by_count":11},{"year":2021,"cited_by_count":14},{"year":2020,"cited_by_count":14},{"year":2019,"cited_by_count":10},{"year":2018,"cited_by_count":1}],"updated_date":"2025-04-18T09:14:22.849455","created_date":"2018-06-01"}