{"id":"https://openalex.org/W2792111852","doi":"https://doi.org/10.1109/tnnls.2018.2798162","title":"Deep Hyperspectral Image Sharpening","display_name":"Deep Hyperspectral Image Sharpening","publication_year":2018,"publication_date":"2018-02-20","ids":{"openalex":"https://openalex.org/W2792111852","doi":"https://doi.org/10.1109/tnnls.2018.2798162","mag":"2792111852","pmid":"https://pubmed.ncbi.nlm.nih.gov/29994458"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tnnls.2018.2798162","pdf_url":null,"source":{"id":"https://openalex.org/S4210175523","display_name":"IEEE Transactions on Neural Networks and Learning Systems","issn_l":"2162-237X","issn":["2162-237X","2162-2388"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5026156663","display_name":"Renwei Dian","orcid":"https://orcid.org/0000-0001-9197-6292"},"institutions":[{"id":"https://openalex.org/I16609230","display_name":"Hunan University","ror":"https://ror.org/05htk5m33","country_code":"CN","type":"education","lineage":["https://openalex.org/I16609230"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Renwei Dian","raw_affiliation_strings":["College of Electrical and Information Engineering, Hunan University, Changsha, China"],"affiliations":[{"raw_affiliation_string":"College of Electrical and Information Engineering, Hunan University, Changsha, China","institution_ids":["https://openalex.org/I16609230"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5067097659","display_name":"Shutao Li","orcid":"https://orcid.org/0000-0002-0585-9848"},"institutions":[{"id":"https://openalex.org/I16609230","display_name":"Hunan University","ror":"https://ror.org/05htk5m33","country_code":"CN","type":"education","lineage":["https://openalex.org/I16609230"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shutao Li","raw_affiliation_strings":["College of Electrical and Information Engineering, Hunan University, Changsha, China"],"affiliations":[{"raw_affiliation_string":"College of Electrical and Information Engineering, Hunan University, Changsha, China","institution_ids":["https://openalex.org/I16609230"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5090847891","display_name":"Anjing Guo","orcid":"https://orcid.org/0000-0002-5228-5410"},"institutions":[{"id":"https://openalex.org/I16609230","display_name":"Hunan University","ror":"https://ror.org/05htk5m33","country_code":"CN","type":"education","lineage":["https://openalex.org/I16609230"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Anjing Guo","raw_affiliation_strings":["College of Electrical and Information Engineering, Hunan University, Changsha, China"],"affiliations":[{"raw_affiliation_string":"College of Electrical and Information Engineering, Hunan University, Changsha, China","institution_ids":["https://openalex.org/I16609230"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5065061505","display_name":"Leyuan Fang","orcid":"https://orcid.org/0000-0003-2351-4461"},"institutions":[{"id":"https://openalex.org/I16609230","display_name":"Hunan University","ror":"https://ror.org/05htk5m33","country_code":"CN","type":"education","lineage":["https://openalex.org/I16609230"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Leyuan Fang","raw_affiliation_strings":["College of Electrical and Information Engineering, Hunan University, Changsha, China"],"affiliations":[{"raw_affiliation_string":"College of Electrical and Information Engineering, Hunan University, Changsha, China","institution_ids":["https://openalex.org/I16609230"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":30.48,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":358,"citation_normalized_percentile":{"value":0.932059,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":99,"max":100},"biblio":{"volume":"29","issue":"11","first_page":"5345","last_page":"5355"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11659","display_name":"Advanced Image Fusion Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11659","display_name":"Advanced Image Fusion Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/sharpening","display_name":"Sharpening","score":0.87329113}],"concepts":[{"id":"https://openalex.org/C2781137444","wikidata":"https://www.wikidata.org/wiki/Q237105","display_name":"Sharpening","level":2,"score":0.87329113},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.8291552},{"id":"https://openalex.org/C177769412","wikidata":"https://www.wikidata.org/wiki/Q278090","display_name":"Prior probability","level":3,"score":0.77883124},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6243365},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.5933877},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.59152555},{"id":"https://openalex.org/C159078339","wikidata":"https://www.wikidata.org/wiki/Q959005","display_name":"Hyperspectral imaging","level":2,"score":0.5759668},{"id":"https://openalex.org/C155512373","wikidata":"https://www.wikidata.org/wiki/Q287450","display_name":"Residual","level":2,"score":0.54722214},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.53698426},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.52578783},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.51016027},{"id":"https://openalex.org/C69744172","wikidata":"https://www.wikidata.org/wiki/Q860822","display_name":"Image fusion","level":3,"score":0.46429476},{"id":"https://openalex.org/C173163844","wikidata":"https://www.wikidata.org/wiki/Q1761440","display_name":"Multispectral image","level":2,"score":0.45509148},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.106356174},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tnnls.2018.2798162","pdf_url":null,"source":{"id":"https://openalex.org/S4210175523","display_name":"IEEE Transactions on Neural Networks and Learning Systems","issn_l":"2162-237X","issn":["2162-237X","2162-2388"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/29994458","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Sustainable cities and communities","id":"https://metadata.un.org/sdg/11","score":0.49}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61520106001"}],"datasets":[],"versions":[],"referenced_works_count":60,"referenced_works":["https://openalex.org/W1584663654","https://openalex.org/W1665214252","https://openalex.org/W1836465849","https://openalex.org/W1885185971","https://openalex.org/W1963826206","https://openalex.org/W1990231296","https://openalex.org/W2004025832","https://openalex.org/W2012946078","https://openalex.org/W2021046129","https://openalex.org/W2022631295","https://openalex.org/W2044310907","https://openalex.org/W2046670074","https://openalex.org/W2051968191","https://openalex.org/W2057522815","https://openalex.org/W2071075212","https://openalex.org/W2087263574","https://openalex.org/W2088748973","https://openalex.org/W2092116045","https://openalex.org/W2097259623","https://openalex.org/W2100109944","https://openalex.org/W2100329651","https://openalex.org/W2124964692","https://openalex.org/W2125298866","https://openalex.org/W2129953395","https://openalex.org/W2133665775","https://openalex.org/W2136944379","https://openalex.org/W2162842940","https://openalex.org/W2170608472","https://openalex.org/W2171627515","https://openalex.org/W2194775991","https://openalex.org/W2200474412","https://openalex.org/W2221448138","https://openalex.org/W2221899823","https://openalex.org/W2240067561","https://openalex.org/W2270657321","https://openalex.org/W2277132981","https://openalex.org/W2316226477","https://openalex.org/W2327302159","https://openalex.org/W2334805829","https://openalex.org/W2508457857","https://openalex.org/W2515454492","https://openalex.org/W2520844005","https://openalex.org/W2523210664","https://openalex.org/W2525312619","https://openalex.org/W2525505768","https://openalex.org/W2527569699","https://openalex.org/W2558072172","https://openalex.org/W2625894731","https://openalex.org/W2748530166","https://openalex.org/W2748857496","https://openalex.org/W2760998155","https://openalex.org/W2761385227","https://openalex.org/W2762383441","https://openalex.org/W2773041763","https://openalex.org/W2777033955","https://openalex.org/W3099843321","https://openalex.org/W3102912004","https://openalex.org/W3104960002","https://openalex.org/W54434497","https://openalex.org/W817971873"],"related_works":["https://openalex.org/W4316465086","https://openalex.org/W4205174160","https://openalex.org/W2988577871","https://openalex.org/W2987347313","https://openalex.org/W2758145160","https://openalex.org/W2726689079","https://openalex.org/W2090564187","https://openalex.org/W2069591060","https://openalex.org/W2022304901","https://openalex.org/W2018850895"],"abstract_inverted_index":{"Hyperspectral":[0],"image":[1,23,48,84,140,145],"(HSI)":[2],"sharpening,":[3],"which":[4,51,80],"aims":[5],"at":[6],"fusing":[7],"an":[8,31,75,78],"observable":[9],"low":[10],"spatial":[11,19],"resolution":[12,20],"(LR)":[13],"HSI":[14,42,66,170],"(LR-HSI)":[15],"with":[16,77],"a":[17,64,120],"high":[18],"(HR)":[21],"multispectral":[22],"(HR-MSI)":[24],"of":[25,39,74,163,175],"the":[26,40,56,72,83,97,102,112,115,126,130,139,143,150,155,161,164],"same":[27],"scene":[28],"to":[29,55,129,137,149,153],"acquire":[30],"HR-HSI,":[32],"has":[33],"recently":[34],"attracted":[35],"much":[36],"attention.":[37],"Most":[38],"recent":[41],"sharpening":[43,67,171],"approaches":[44,172],"are":[45,52,147],"based":[46],"on":[47],"priors":[49,85,100,146],"modeling,":[50],"usually":[53],"sensitive":[54],"parameters":[57],"selection":[58],"and":[59,104,178],"time-consuming.":[60],"This":[61],"paper":[62],"presents":[63],"deep":[65,87,99,134],"method":[68,95],"(named":[69],"DHSIS)":[70],"for":[71],"fusion":[73,106,116,151],"LR-HSI":[76,103],"HR-MSI,":[79],"directly":[81],"learns":[82],"via":[86,118,133],"convolutional":[88],"neural":[89],"network-based":[90],"residual":[91,135],"learning.":[92],"The":[93],"DHSIS":[94,165],"incorporates":[96],"learned":[98,144],"into":[101],"HR-MSI":[105],"framework.":[107],"Specifically,":[108],"we":[109,124],"first":[110],"initialize":[111],"HR-HSI":[113,128,132],"from":[114],"framework":[117,152],"solving":[119],"Sylvester":[121],"equation.":[122],"Then,":[123],"map":[125],"initialized":[127],"reference":[131],"learning":[136],"learn":[138],"priors.":[141],"Finally,":[142],"returned":[148],"reconstruct":[154],"final":[156],"HR-HSI.":[157],"Experimental":[158],"results":[159],"demonstrate":[160],"superiority":[162],"approach":[166],"over":[167],"existing":[168],"state-of-the-art":[169],"in":[173],"terms":[174],"reconstruction":[176],"accuracy":[177],"running":[179],"time.":[180]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2792111852","counts_by_year":[{"year":2024,"cited_by_count":45},{"year":2023,"cited_by_count":67},{"year":2022,"cited_by_count":81},{"year":2021,"cited_by_count":68},{"year":2020,"cited_by_count":57},{"year":2019,"cited_by_count":31},{"year":2018,"cited_by_count":9}],"updated_date":"2025-01-18T18:17:44.486810","created_date":"2018-03-29"}