{"id":"https://openalex.org/W2765178306","doi":"https://doi.org/10.1109/tnnls.2017.2761401","title":"Shared Autoencoder Gaussian Process Latent Variable Model for Visual Classification","display_name":"Shared Autoencoder Gaussian Process Latent Variable Model for Visual Classification","publication_year":2017,"publication_date":"2017-10-31","ids":{"openalex":"https://openalex.org/W2765178306","doi":"https://doi.org/10.1109/tnnls.2017.2761401","mag":"2765178306","pmid":"https://pubmed.ncbi.nlm.nih.gov/29990089"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tnnls.2017.2761401","pdf_url":null,"source":{"id":"https://openalex.org/S4210175523","display_name":"IEEE Transactions on Neural Networks and Learning Systems","issn_l":"2162-237X","issn":["2162-237X","2162-2388"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100753458","display_name":"Jinxing Li","orcid":"https://orcid.org/0000-0001-5156-0305"},"institutions":[{"id":"https://openalex.org/I14243506","display_name":"Hong Kong Polytechnic University","ror":"https://ror.org/0030zas98","country_code":"HK","type":"funder","lineage":["https://openalex.org/I14243506"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Jinxing Li","raw_affiliation_strings":["Department of Computing, Hong Kong Polytechnic University, Hong Kong"],"affiliations":[{"raw_affiliation_string":"Department of Computing, Hong Kong Polytechnic University, Hong Kong","institution_ids":["https://openalex.org/I14243506"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5048088901","display_name":"Bob Zhang","orcid":"https://orcid.org/0000-0003-2497-9519"},"institutions":[{"id":"https://openalex.org/I204512498","display_name":"University of Macau","ror":"https://ror.org/01r4q9n85","country_code":"MO","type":"funder","lineage":["https://openalex.org/I204512498"]}],"countries":["MO"],"is_corresponding":false,"raw_author_name":"Bob Zhang","raw_affiliation_strings":["Department of Computer and Information Science, University of Macau, Zhuhai, China"],"affiliations":[{"raw_affiliation_string":"Department of Computer and Information Science, University of Macau, Zhuhai, China","institution_ids":["https://openalex.org/I204512498"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100325058","display_name":"David Zhang","orcid":"https://orcid.org/0000-0002-5027-5286"},"institutions":[{"id":"https://openalex.org/I14243506","display_name":"Hong Kong Polytechnic University","ror":"https://ror.org/0030zas98","country_code":"HK","type":"funder","lineage":["https://openalex.org/I14243506"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"David Zhang","raw_affiliation_strings":["Department of Computing, Hong Kong Polytechnic University, Hong Kong"],"affiliations":[{"raw_affiliation_string":"Department of Computing, Hong Kong Polytechnic University, Hong Kong","institution_ids":["https://openalex.org/I14243506"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.781,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":37,"citation_normalized_percentile":{"value":0.839875,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":94,"max":95},"biblio":{"volume":"29","issue":"9","first_page":"4272","last_page":"4286"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9965,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9965,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9929,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9864,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/autoencoder","display_name":"Autoencoder","score":0.8812469},{"id":"https://openalex.org/keywords/overfitting","display_name":"Overfitting","score":0.7269682},{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.4629029},{"id":"https://openalex.org/keywords/regularization","display_name":"Regularization","score":0.44628802},{"id":"https://openalex.org/keywords/manifold","display_name":"Manifold (fluid mechanics)","score":0.43800214}],"concepts":[{"id":"https://openalex.org/C101738243","wikidata":"https://www.wikidata.org/wiki/Q786435","display_name":"Autoencoder","level":3,"score":0.8812469},{"id":"https://openalex.org/C22019652","wikidata":"https://www.wikidata.org/wiki/Q331309","display_name":"Overfitting","level":3,"score":0.7269682},{"id":"https://openalex.org/C61326573","wikidata":"https://www.wikidata.org/wiki/Q1496376","display_name":"Gaussian process","level":3,"score":0.62734073},{"id":"https://openalex.org/C51167844","wikidata":"https://www.wikidata.org/wiki/Q4422623","display_name":"Latent variable","level":2,"score":0.62289196},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.57977265},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5317558},{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.4629029},{"id":"https://openalex.org/C2776135515","wikidata":"https://www.wikidata.org/wiki/Q17143721","display_name":"Regularization (linguistics)","level":2,"score":0.44628802},{"id":"https://openalex.org/C529865628","wikidata":"https://www.wikidata.org/wiki/Q1790740","display_name":"Manifold (fluid mechanics)","level":2,"score":0.43800214},{"id":"https://openalex.org/C65965080","wikidata":"https://www.wikidata.org/wiki/Q1806885","display_name":"Latent variable model","level":3,"score":0.43330294},{"id":"https://openalex.org/C118505674","wikidata":"https://www.wikidata.org/wiki/Q42586063","display_name":"Encoder","level":2,"score":0.42691344},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.42666242},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.41162238},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.40023142},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.39035305},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.34153533},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.23745453},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.1170423},{"id":"https://openalex.org/C78519656","wikidata":"https://www.wikidata.org/wiki/Q101333","display_name":"Mechanical engineering","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tnnls.2017.2761401","pdf_url":null,"source":{"id":"https://openalex.org/S4210175523","display_name":"IEEE Transactions on Neural Networks and Learning Systems","issn_l":"2162-237X","issn":["2162-237X","2162-2388"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/29990089","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Reduced inequalities","id":"https://metadata.un.org/sdg/10","score":0.75}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61602540"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61271344"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61332011"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61272292"},{"funder":"https://openalex.org/F4320321655","funder_display_name":"Science and Technology Development Fund","award_id":"124/2014/A3"},{"funder":"https://openalex.org/F4320322598","funder_display_name":"Hong Kong Polytechnic University","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":49,"referenced_works":["https://openalex.org/W1201875361","https://openalex.org/W1497960466","https://openalex.org/W1523385540","https://openalex.org/W1599882347","https://openalex.org/W1603575269","https://openalex.org/W1746819321","https://openalex.org/W1778065289","https://openalex.org/W1883346539","https://openalex.org/W1907621547","https://openalex.org/W1962110432","https://openalex.org/W1965766334","https://openalex.org/W1977617632","https://openalex.org/W1985133440","https://openalex.org/W1992295377","https://openalex.org/W2007884212","https://openalex.org/W2007972815","https://openalex.org/W2025341678","https://openalex.org/W2052800689","https://openalex.org/W2061572659","https://openalex.org/W2070452328","https://openalex.org/W2071207147","https://openalex.org/W2080142539","https://openalex.org/W2094919853","https://openalex.org/W2097266862","https://openalex.org/W2100235303","https://openalex.org/W2104563967","https://openalex.org/W2106277773","https://openalex.org/W2108013467","https://openalex.org/W2115918762","https://openalex.org/W2120405375","https://openalex.org/W2125290066","https://openalex.org/W2126497681","https://openalex.org/W2128532956","https://openalex.org/W2133294540","https://openalex.org/W2134270519","https://openalex.org/W2138118304","https://openalex.org/W2142674578","https://openalex.org/W2169779569","https://openalex.org/W2170045362","https://openalex.org/W2184188583","https://openalex.org/W2186500555","https://openalex.org/W2217359989","https://openalex.org/W2218644571","https://openalex.org/W2342880667","https://openalex.org/W2399260173","https://openalex.org/W2519597991","https://openalex.org/W3104240107","https://openalex.org/W3143107425","https://openalex.org/W4211049957"],"related_works":["https://openalex.org/W62001224","https://openalex.org/W4289763776","https://openalex.org/W4243467573","https://openalex.org/W3032390039","https://openalex.org/W2988134182","https://openalex.org/W2810330923","https://openalex.org/W2770818364","https://openalex.org/W2461917396","https://openalex.org/W2037497866","https://openalex.org/W1502435251"],"abstract_inverted_index":{"Multiview":[0],"learning":[1,30],"reveals":[2],"the":[3,11,34,58,63,67,69,87,91,97,100,109,121,124,127,130,135,142,148,160,164,172,184,198,203,209,212],"latent":[4,37,55,76],"correlation":[5],"among":[6],"different":[7],"modalities":[8],"and":[9,47,51,107,140,176,186,200],"utilizes":[10],"complementary":[12],"information":[13],"to":[14,41,90,96,108,182],"achieve":[15],"a":[16,27,43,53,154],"better":[17],"performance":[18],"in":[19,57,120],"many":[20],"applications.":[21],"In":[22,163],"this":[23],"paper,":[24],"we":[25],"propose":[26],"novel":[28],"multiview":[29],"model":[31,39,78],"based":[32,170],"on":[33,66,171,192],"Gaussian":[35,73],"process":[36,74],"variable":[38,56,77],"(GPLVM)":[40],"learn":[42],"set":[44],"of":[45,99,116,137,144,202,211],"nonlinear":[46,104],"nonparametric":[48],"mapping":[49,85],"functions":[50],"obtain":[52],"shared":[54,71,92],"manifold":[59,93],"space.":[60,94],"Different":[61],"from":[62,86,106],"previous":[64],"work":[65],"GPLVM,":[68],"proposed":[70,149,161,204],"autoencoder":[72,101],"(SAGP)":[75],"assumes":[79],"that":[80],"there":[81],"is":[82,157,180],"an":[83,167],"additional":[84],"observed":[88],"data":[89,195],"Due":[95],"introduction":[98],"framework,":[102],"both":[103],"projections":[105],"observation":[110],"are":[111],"considered":[112],"simultaneously.":[113],"Additionally,":[114],"instead":[115],"fully":[117],"connecting":[118],"used":[119],"conventional":[122],"autoencoder,":[123],"SAGP":[125],"achieves":[126],"mappings":[128],"utilizing":[129],"GP,":[131],"which":[132],"remarkably":[133],"reduces":[134],"number":[136],"estimated":[138],"parameters":[139],"avoids":[141],"phenomenon":[143],"overfitting.":[145],"To":[146],"make":[147],"method":[150,175],"adaptive":[151],"for":[152],"classification,":[153],"discriminative":[155],"regularization":[156],"embedded":[158],"into":[159],"method.":[162],"optimization":[165],"process,":[166],"efficient":[168],"algorithm":[169],"alternating":[173],"direction":[174],"gradient":[177],"decent":[178],"techniques":[179],"designed":[181],"solve":[183],"encoder":[185],"decoder":[187],"parts":[188],"alternatively.":[189],"Experimental":[190],"results":[191],"three":[193],"real-world":[194],"sets":[196],"substantiate":[197],"effectiveness":[199],"superiority":[201],"approach":[205],"as":[206],"compared":[207],"with":[208],"state":[210],"art.":[213]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2765178306","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":5},{"year":2022,"cited_by_count":4},{"year":2021,"cited_by_count":4},{"year":2020,"cited_by_count":6},{"year":2019,"cited_by_count":7},{"year":2018,"cited_by_count":10}],"updated_date":"2025-04-27T01:39:20.807116","created_date":"2017-11-10"}