{"id":"https://openalex.org/W2580347120","doi":"https://doi.org/10.1109/tnnls.2016.2610465","title":"Online Nonlinear AUC Maximization for Imbalanced Data Sets","display_name":"Online Nonlinear AUC Maximization for Imbalanced Data Sets","publication_year":2017,"publication_date":"2017-01-27","ids":{"openalex":"https://openalex.org/W2580347120","doi":"https://doi.org/10.1109/tnnls.2016.2610465","mag":"2580347120","pmid":"https://pubmed.ncbi.nlm.nih.gov/28141529"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tnnls.2016.2610465","pdf_url":null,"source":{"id":"https://openalex.org/S4210175523","display_name":"IEEE Transactions on Neural Networks and Learning Systems","issn_l":"2162-237X","issn":["2162-237X","2162-2388"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5083569396","display_name":"Junjie Hu","orcid":"https://orcid.org/0000-0003-2522-4724"},"institutions":[{"id":"https://openalex.org/I74973139","display_name":"Carnegie Mellon University","ror":"https://ror.org/05x2bcf33","country_code":"US","type":"education","lineage":["https://openalex.org/I74973139"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Junjie Hu","raw_affiliation_strings":["Language Technologies Institute, Carnegie Mellon University, Pittsburgh, PA, USA"],"affiliations":[{"raw_affiliation_string":"Language Technologies Institute, Carnegie Mellon University, Pittsburgh, PA, USA","institution_ids":["https://openalex.org/I74973139"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5081662508","display_name":"Haiqin Yang","orcid":"https://orcid.org/0000-0001-5453-476X"},"institutions":[{"id":"https://openalex.org/I47605537","display_name":"The Hang Seng University of Hong Kong","ror":"https://ror.org/04fa64g55","country_code":"CN","type":"education","lineage":["https://openalex.org/I47605537"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Haiqin Yang","raw_affiliation_strings":["Department of Computing, Hang Seng Management College, Hong Kong"],"affiliations":[{"raw_affiliation_string":"Department of Computing, Hang Seng Management College, Hong Kong","institution_ids":["https://openalex.org/I47605537"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5069596903","display_name":"Michael R. Lyu","orcid":"https://orcid.org/0000-0002-3666-5798"},"institutions":[{"id":"https://openalex.org/I889458895","display_name":"University of Hong Kong","ror":"https://ror.org/02zhqgq86","country_code":"HK","type":"education","lineage":["https://openalex.org/I889458895"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Michael R. Lyu","raw_affiliation_strings":["Department of Computer Science and Engineering, CUHK, Hong Kong"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Engineering, CUHK, Hong Kong","institution_ids":["https://openalex.org/I889458895"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5042251906","display_name":"Irwin King","orcid":"https://orcid.org/0000-0001-8106-6447"},"institutions":[{"id":"https://openalex.org/I889458895","display_name":"University of Hong Kong","ror":"https://ror.org/02zhqgq86","country_code":"HK","type":"education","lineage":["https://openalex.org/I889458895"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Irwin King","raw_affiliation_strings":["Department of Computer Science and Engineering, CUHK, Hong Kong"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Engineering, CUHK, Hong Kong","institution_ids":["https://openalex.org/I889458895"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5105881332","display_name":"Anthony Man\u2013Cho So","orcid":"https://orcid.org/0000-0003-2588-7851"},"institutions":[{"id":"https://openalex.org/I177725633","display_name":"Chinese University of Hong Kong","ror":"https://ror.org/00t33hh48","country_code":"CN","type":"education","lineage":["https://openalex.org/I177725633"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Anthony Man-Cho So","raw_affiliation_strings":["Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Hong Kong"],"affiliations":[{"raw_affiliation_string":"Department of Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Hong Kong","institution_ids":["https://openalex.org/I177725633"]}]}],"institution_assertions":[],"countries_distinct_count":3,"institutions_distinct_count":4,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":4.359,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":51,"citation_normalized_percentile":{"value":0.999763,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":96,"max":97},"biblio":{"volume":"29","issue":"4","first_page":"882","last_page":"895"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation Techniques","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation Techniques","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12072","display_name":"Machine Learning and Algorithms","score":0.9939,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11269","display_name":"Algorithms and Data Compression","score":0.9914,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/maximization","display_name":"Maximization","score":0.62531567}],"concepts":[{"id":"https://openalex.org/C2776330181","wikidata":"https://www.wikidata.org/wiki/Q18358244","display_name":"Maximization","level":2,"score":0.62531567},{"id":"https://openalex.org/C158622935","wikidata":"https://www.wikidata.org/wiki/Q660848","display_name":"Nonlinear system","level":2,"score":0.53893155},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5034568},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.36419857},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.34581107},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.33762977},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.22479233},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.15705162},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tnnls.2016.2610465","pdf_url":null,"source":{"id":"https://openalex.org/S4210175523","display_name":"IEEE Transactions on Neural Networks and Learning Systems","issn_l":"2162-237X","issn":["2162-237X","2162-2388"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/28141529","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Partnerships for the goals","id":"https://metadata.un.org/sdg/17","score":0.47}],"grants":[{"funder":"https://openalex.org/F4320308943","funder_display_name":"Microsoft Research","award_id":"FY16-RES-THEME-005"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61332010"}],"datasets":[],"versions":[],"referenced_works_count":60,"referenced_works":["https://openalex.org/W146164349","https://openalex.org/W1508342932","https://openalex.org/W1512149552","https://openalex.org/W1537838346","https://openalex.org/W1570963478","https://openalex.org/W16571744","https://openalex.org/W1709057194","https://openalex.org/W1777124189","https://openalex.org/W1789204192","https://openalex.org/W1915109052","https://openalex.org/W1972025477","https://openalex.org/W1973678258","https://openalex.org/W1975588358","https://openalex.org/W1979711143","https://openalex.org/W1996652862","https://openalex.org/W2005104010","https://openalex.org/W2012715465","https://openalex.org/W2029171653","https://openalex.org/W2040870580","https://openalex.org/W2056277442","https://openalex.org/W2066298612","https://openalex.org/W2069017697","https://openalex.org/W2070771761","https://openalex.org/W2083551746","https://openalex.org/W2083905053","https://openalex.org/W2087787741","https://openalex.org/W2097645432","https://openalex.org/W2119885577","https://openalex.org/W2120100126","https://openalex.org/W2121038136","https://openalex.org/W2125335195","https://openalex.org/W2129564505","https://openalex.org/W2129957127","https://openalex.org/W2142827986","https://openalex.org/W2146682077","https://openalex.org/W2149433471","https://openalex.org/W2150621701","https://openalex.org/W2153290280","https://openalex.org/W2154462399","https://openalex.org/W2155653793","https://openalex.org/W2157825442","https://openalex.org/W2160218441","https://openalex.org/W2161592627","https://openalex.org/W2166886563","https://openalex.org/W2169749653","https://openalex.org/W2171188027","https://openalex.org/W2171566706","https://openalex.org/W2188523697","https://openalex.org/W2262925392","https://openalex.org/W2299684943","https://openalex.org/W2346822065","https://openalex.org/W2950403298","https://openalex.org/W2950476268","https://openalex.org/W3003446791","https://openalex.org/W3009009611","https://openalex.org/W3119651796","https://openalex.org/W3141595720","https://openalex.org/W4249572517","https://openalex.org/W4285719527","https://openalex.org/W567441428"],"related_works":["https://openalex.org/W4391375266","https://openalex.org/W3002753104","https://openalex.org/W2142036596","https://openalex.org/W2077600819","https://openalex.org/W2072657027","https://openalex.org/W2061531152","https://openalex.org/W2042327336","https://openalex.org/W2033914206","https://openalex.org/W2007980826","https://openalex.org/W1979597421"],"abstract_inverted_index":{"Classifying":[0],"binary":[1],"imbalanced":[2,58],"streaming":[3],"data":[4,14,69,202,227],"is":[5,38,169,174,187],"a":[6,33,64,77,145,178,215],"significant":[7],"task":[8],"in":[9],"both":[10,222],"machine":[11],"learning":[12,59,210],"and":[13,45,136,224],"mining.":[15],"Previously,":[16],"online":[17,57],"area":[18],"under":[19],"the":[20,48,55,68,72,93,100,112,116,121,129,132,142,167,181,184,190,207,230],"receiver":[21],"operating":[22],"characteristic":[23],"(ROC)":[24],"curve":[25],"(AUC)":[26],"maximization":[27],"has":[28],"been":[29],"proposed":[30,234],"to":[31,91,110,127,149,156,189,197,212],"seek":[32],"linear":[34],"classifier.":[35],"However,":[36],"it":[37],"not":[39],"well":[40],"suited":[41],"for":[42,67,201],"handling":[43],"nonlinearity":[44],"heterogeneity":[46],"of":[47,95,131,183,217,232],"data.":[49],"In":[50],"this":[51],"paper,":[52],"we":[53,103,140,160,205],"propose":[54,161],"kernelized":[56],"(KOIL)":[60],"algorithm,":[61],"which":[62],"produces":[63],"nonlinear":[65],"classifier":[66],"by":[70,119],"maximizing":[71],"AUC":[73],"score":[74],"while":[75],"minimizing":[76],"functional":[78],"regularizer.":[79],"We":[80],"address":[81],"four":[82],"major":[83],"challenges":[84],"that":[85],"arise":[86],"from":[87],"our":[88,233],"approach.":[89,235],"First,":[90],"control":[92],"number":[94],"support":[96,124,147,153],"vectors":[97],"without":[98],"sacrificing":[99],"model":[101,186],"performance,":[102],"introduce":[104],"two":[105],"buffers":[106],"with":[107,193],"fixed":[108],"budgets":[109],"capture":[111],"global":[113],"information":[114,158],"on":[115,144,221],"decision":[117,134],"boundary":[118],"storing":[120],"corresponding":[122],"learned":[123,133,185,192],"vectors.":[125,154],"Second,":[126],"restrict":[128],"fluctuation":[130],"function":[135],"achieve":[137],"smooth":[138],"updating,":[139],"confine":[141],"influence":[143],"new":[146],"vector":[148],"its":[150],"k-nearest":[151],"opposite":[152],"Third,":[155],"avoid":[157],"loss,":[159],"an":[162],"effective":[163],"compensation":[164,179],"scheme":[165],"after":[166],"replacement":[168],"conducted":[170],"when":[171],"either":[172],"buffer":[173],"full.":[175],"With":[176],"such":[177],"scheme,":[180],"performance":[182],"comparable":[188],"one":[191],"infinite":[194],"budgets.":[195],"Fourth,":[196],"determine":[198],"good":[199],"kernels":[200],"similarity":[203],"representation,":[204],"exploit":[206],"multiple":[208],"kernel":[209],"framework":[211],"automatically":[213],"learn":[214],"set":[216],"kernels.":[218],"Extensive":[219],"experiments":[220],"synthetic":[223],"real-world":[225],"benchmark":[226],"sets":[228],"demonstrate":[229],"efficacy":[231]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2580347120","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":5},{"year":2022,"cited_by_count":11},{"year":2021,"cited_by_count":11},{"year":2020,"cited_by_count":9},{"year":2019,"cited_by_count":3},{"year":2018,"cited_by_count":9},{"year":2017,"cited_by_count":2}],"updated_date":"2024-12-31T12:06:08.290350","created_date":"2017-02-03"}