{"id":"https://openalex.org/W2343542818","doi":"https://doi.org/10.1109/tnnls.2015.2504538","title":"Learning the Conformal Transformation Kernel for Image Recognition","display_name":"Learning the Conformal Transformation Kernel for Image Recognition","publication_year":2015,"publication_date":"2015-12-17","ids":{"openalex":"https://openalex.org/W2343542818","doi":"https://doi.org/10.1109/tnnls.2015.2504538","mag":"2343542818","pmid":"https://pubmed.ncbi.nlm.nih.gov/26685272"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tnnls.2015.2504538","pdf_url":null,"source":{"id":"https://openalex.org/S4210175523","display_name":"IEEE Transactions on Neural Networks and Learning Systems","issn_l":"2162-237X","issn":["2162-237X","2162-2388"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100553283","display_name":"Huilin Xiong","orcid":null},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"funder","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Huilin Xiong","raw_affiliation_strings":["School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China","institution_ids":["https://openalex.org/I183067930"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100445293","display_name":"Wenxian Yu","orcid":"https://orcid.org/0000-0002-8741-776X"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"funder","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wenxian Yu","raw_affiliation_strings":["School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China","institution_ids":["https://openalex.org/I183067930"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100635997","display_name":"Xin Yang","orcid":"https://orcid.org/0000-0003-0445-6497"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"funder","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xin Yang","raw_affiliation_strings":["School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China","institution_ids":["https://openalex.org/I183067930"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5013967994","display_name":"M.N.S. Swamy","orcid":"https://orcid.org/0000-0002-3989-5476"},"institutions":[{"id":"https://openalex.org/I60158472","display_name":"Concordia University","ror":"https://ror.org/0420zvk78","country_code":"CA","type":"funder","lineage":["https://openalex.org/I60158472"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"M. N. S. Swamy","raw_affiliation_strings":["Department of Electrical and Computer Engineering, Concordia University, Montreal, QC, Canada"],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Computer Engineering, Concordia University, Montreal, QC, Canada","institution_ids":["https://openalex.org/I60158472"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5057910656","display_name":"Qiuze Yu","orcid":"https://orcid.org/0000-0003-2866-5939"},"institutions":[{"id":"https://openalex.org/I37461747","display_name":"Wuhan University","ror":"https://ror.org/033vjfk17","country_code":"CN","type":"funder","lineage":["https://openalex.org/I37461747"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Qiuze Yu","raw_affiliation_strings":["Wuhan University, Wuhan, China"],"affiliations":[{"raw_affiliation_string":"Wuhan University, Wuhan, China","institution_ids":["https://openalex.org/I37461747"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.858,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":11,"citation_normalized_percentile":{"value":0.738609,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":86,"max":87},"biblio":{"volume":"28","issue":"1","first_page":"149","last_page":"163"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/multiple-kernel-learning","display_name":"Multiple kernel learning","score":0.52358925},{"id":"https://openalex.org/keywords/feature-vector","display_name":"Feature vector","score":0.4989574},{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.41415682}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.77595246},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.7732694},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.64042723},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.55004734},{"id":"https://openalex.org/C2776879701","wikidata":"https://www.wikidata.org/wiki/Q25048660","display_name":"Multiple kernel learning","level":4,"score":0.52358925},{"id":"https://openalex.org/C83665646","wikidata":"https://www.wikidata.org/wiki/Q42139305","display_name":"Feature vector","level":2,"score":0.4989574},{"id":"https://openalex.org/C31510193","wikidata":"https://www.wikidata.org/wiki/Q1192553","display_name":"Facial recognition system","level":3,"score":0.48136336},{"id":"https://openalex.org/C64876066","wikidata":"https://www.wikidata.org/wiki/Q5141226","display_name":"Cognitive neuroscience of visual object recognition","level":3,"score":0.46555573},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.4376287},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.41415682},{"id":"https://openalex.org/C122280245","wikidata":"https://www.wikidata.org/wiki/Q620622","display_name":"Kernel method","level":3,"score":0.35856515},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.2897733},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.24417341},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tnnls.2015.2504538","pdf_url":null,"source":{"id":"https://openalex.org/S4210175523","display_name":"IEEE Transactions on Neural Networks and Learning Systems","issn_l":"2162-237X","issn":["2162-237X","2162-2388"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/26685272","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.54,"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities"}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61331015"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61375008"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61174196"}],"datasets":[],"versions":[],"referenced_works_count":40,"referenced_works":["https://openalex.org/W113578986","https://openalex.org/W1591385104","https://openalex.org/W1606858007","https://openalex.org/W1625255723","https://openalex.org/W1963932623","https://openalex.org/W1985809919","https://openalex.org/W2020523929","https://openalex.org/W2027922120","https://openalex.org/W2041406732","https://openalex.org/W2041657594","https://openalex.org/W2053186076","https://openalex.org/W2066941820","https://openalex.org/W2092032134","https://openalex.org/W2098693229","https://openalex.org/W2108697353","https://openalex.org/W2109743529","https://openalex.org/W2110662122","https://openalex.org/W2111574755","https://openalex.org/W2112074816","https://openalex.org/W2117553576","https://openalex.org/W2118439480","https://openalex.org/W2118585731","https://openalex.org/W2121647436","https://openalex.org/W2125874614","https://openalex.org/W2129812935","https://openalex.org/W2134262590","https://openalex.org/W2140389641","https://openalex.org/W2145295623","https://openalex.org/W2145934166","https://openalex.org/W2152939563","https://openalex.org/W2153635508","https://openalex.org/W2162915993","https://openalex.org/W2164071167","https://openalex.org/W2166049352","https://openalex.org/W2323540798","https://openalex.org/W2994340921","https://openalex.org/W3018586685","https://openalex.org/W3119651796","https://openalex.org/W3120421331","https://openalex.org/W3148981562"],"related_works":["https://openalex.org/W2725311638","https://openalex.org/W2570832236","https://openalex.org/W2544132760","https://openalex.org/W2542234468","https://openalex.org/W2123146423","https://openalex.org/W2114428029","https://openalex.org/W2091950550","https://openalex.org/W2088032561","https://openalex.org/W2056283567","https://openalex.org/W1565299197"],"abstract_inverted_index":{"In":[0,177],"this":[1],"paper,":[2],"we":[3,116],"present":[4],"a":[5,19,50,80,121,131],"multiclass":[6],"data":[7,57],"classifier,":[8],"denoted":[9],"by":[10],"optimal":[11],"conformal":[12],"transformation":[13],"kernel":[14,21],"(OCTK),":[15],"based":[16],"on":[17,139],"learning":[18],"specific":[20],"model,":[22],"the":[23,44,59,63,68,73,87,96,102,124,147,152,163,180,188],"CTK,":[24],"and":[25,38,135,142],"utilize":[26],"it":[27],"in":[28,55,109,113],"two":[29],"types":[30],"of":[31,72,86,101,106,162,170],"image":[32,110,114],"recognition":[33,37,115,141,157],"tasks,":[34],"namely,":[35],"face":[36,120,140],"object":[39,143],"categorization.":[40],"We":[41],"show":[42,145],"that":[43,67,85,123,146,161],"learned":[45,103],"CTK":[46,104],"can":[47,183],"lead":[48],"to":[49,62,78,92,119,126],"desirable":[51],"spatial":[52,70],"geometry":[53,71],"change":[54],"mapping":[56],"from":[58],"input":[60],"space":[61],"feature":[64,171,173],"space,":[65],"so":[66],"local":[69],"heterogeneous":[74],"regions":[75,89],"is":[76,90,105,175],"magnified":[77],"favor":[79],"more":[81],"refined":[82],"distinguishing,":[83],"while":[84],"homogeneous":[88],"compressed":[91],"neglect":[93],"or":[94,154,172],"suppress":[95],"intraclass":[97,133],"variations.":[98],"This":[99],"nature":[100],"great":[107],"benefit":[108],"recognition,":[111],"since":[112],"always":[117],"have":[118],"challenge":[122],"images":[125],"be":[127],"classified":[128],"are":[129],"with":[130,160],"large":[132],"diversity":[134],"interclass":[136],"similarity.":[137],"Experiments":[138],"categorization":[144],"proposed":[148],"OCTK":[149,181],"classifier":[150,182,193],"achieves":[151],"best":[153,156],"second":[155],"result":[158],"compared":[159],"state-of-the-art":[164],"classifiers,":[165],"no":[166],"matter":[167],"what":[168],"kind":[169],"representation":[174],"used.":[176],"computational":[178],"efficiency,":[179],"perform":[184],"significantly":[185],"faster":[186],"than":[187],"linear":[189],"support":[190],"vector":[191],"machine":[192],"(linear":[194],"LIBSVM)":[195],"can.":[196]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2343542818","counts_by_year":[{"year":2021,"cited_by_count":2},{"year":2020,"cited_by_count":5},{"year":2018,"cited_by_count":1},{"year":2017,"cited_by_count":2},{"year":2016,"cited_by_count":1}],"updated_date":"2025-04-27T01:38:43.741681","created_date":"2016-06-24"}