{"id":"https://openalex.org/W2221448138","doi":"https://doi.org/10.1109/tnnls.2015.2435783","title":"Change Detection in Synthetic Aperture Radar Images Based on Deep Neural Networks","display_name":"Change Detection in Synthetic Aperture Radar Images Based on Deep Neural Networks","publication_year":2015,"publication_date":"2015-06-10","ids":{"openalex":"https://openalex.org/W2221448138","doi":"https://doi.org/10.1109/tnnls.2015.2435783","mag":"2221448138","pmid":"https://pubmed.ncbi.nlm.nih.gov/26068879"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tnnls.2015.2435783","pdf_url":null,"source":{"id":"https://openalex.org/S4210175523","display_name":"IEEE Transactions on Neural Networks and Learning Systems","issn_l":"2162-237X","issn":["2162-237X","2162-2388"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5091227928","display_name":"Maoguo Gong","orcid":"https://orcid.org/0000-0002-0415-8556"},"institutions":[{"id":"https://openalex.org/I149594827","display_name":"Xidian University","ror":"https://ror.org/05s92vm98","country_code":"CN","type":"education","lineage":["https://openalex.org/I149594827"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Maoguo Gong","raw_affiliation_strings":["Key Laboratory of Intelligent Perception and Image Understanding, Ministry of Education, Xidian University, Xi'an, China"],"affiliations":[{"raw_affiliation_string":"Key Laboratory of Intelligent Perception and Image Understanding, Ministry of Education, Xidian University, Xi'an, China","institution_ids":["https://openalex.org/I149594827"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5072790694","display_name":"Jiaojiao Zhao","orcid":"https://orcid.org/0000-0002-4448-7602"},"institutions":[{"id":"https://openalex.org/I149594827","display_name":"Xidian University","ror":"https://ror.org/05s92vm98","country_code":"CN","type":"education","lineage":["https://openalex.org/I149594827"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jiaojiao Zhao","raw_affiliation_strings":["Key Laboratory of Intelligent Perception and Image Understanding, Ministry of Education, Xidian University, Xi'an, China"],"affiliations":[{"raw_affiliation_string":"Key Laboratory of Intelligent Perception and Image Understanding, Ministry of Education, Xidian University, Xi'an, China","institution_ids":["https://openalex.org/I149594827"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100625089","display_name":"Jia Liu","orcid":"https://orcid.org/0000-0002-5999-2361"},"institutions":[{"id":"https://openalex.org/I149594827","display_name":"Xidian University","ror":"https://ror.org/05s92vm98","country_code":"CN","type":"education","lineage":["https://openalex.org/I149594827"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jia Liu","raw_affiliation_strings":["Key Laboratory of Intelligent Perception and Image Understanding, Ministry of Education, Xidian University, Xi'an, China"],"affiliations":[{"raw_affiliation_string":"Key Laboratory of Intelligent Perception and Image Understanding, Ministry of Education, Xidian University, Xi'an, China","institution_ids":["https://openalex.org/I149594827"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5007404362","display_name":"Qiguang Miao","orcid":"https://orcid.org/0000-0002-2872-388X"},"institutions":[{"id":"https://openalex.org/I149594827","display_name":"Xidian University","ror":"https://ror.org/05s92vm98","country_code":"CN","type":"education","lineage":["https://openalex.org/I149594827"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Qiguang Miao","raw_affiliation_strings":["School of Computer Science and Technology, Xidian University, Xi'an, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Technology, Xidian University, Xi'an, China","institution_ids":["https://openalex.org/I149594827"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5050630882","display_name":"Licheng Jiao","orcid":"https://orcid.org/0000-0003-3354-9617"},"institutions":[{"id":"https://openalex.org/I149594827","display_name":"Xidian University","ror":"https://ror.org/05s92vm98","country_code":"CN","type":"education","lineage":["https://openalex.org/I149594827"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Licheng Jiao","raw_affiliation_strings":["Key Laboratory of Intelligent Perception and Image Understanding, Ministry of Education, Xidian University, Xi'an, China"],"affiliations":[{"raw_affiliation_string":"Key Laboratory of Intelligent Perception and Image Understanding, Ministry of Education, Xidian University, Xi'an, China","institution_ids":["https://openalex.org/I149594827"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":40.326,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":559,"citation_normalized_percentile":{"value":0.999851,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":99,"max":100},"biblio":{"volume":"27","issue":"1","first_page":"125","last_page":"138"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10801","display_name":"Synthetic Aperture Radar (SAR) Applications and Techniques","score":0.9782,"subfield":{"id":"https://openalex.org/subfields/2202","display_name":"Aerospace Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9755,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.51049745},{"id":"https://openalex.org/keywords/representation","display_name":"Representation","score":0.4357301},{"id":"https://openalex.org/keywords/feature-learning","display_name":"Feature Learning","score":0.43164784}],"concepts":[{"id":"https://openalex.org/C87360688","wikidata":"https://www.wikidata.org/wiki/Q740686","display_name":"Synthetic aperture radar","level":2,"score":0.8455854},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.8046156},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.76033854},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.73343205},{"id":"https://openalex.org/C203595873","wikidata":"https://www.wikidata.org/wiki/Q25389927","display_name":"Change detection","level":2,"score":0.6437139},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.6355463},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.52922845},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.51049745},{"id":"https://openalex.org/C10929652","wikidata":"https://www.wikidata.org/wiki/Q7279985","display_name":"Radar imaging","level":3,"score":0.49243817},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.4573521},{"id":"https://openalex.org/C554190296","wikidata":"https://www.wikidata.org/wiki/Q47528","display_name":"Radar","level":2,"score":0.4460896},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.44351828},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.4357301},{"id":"https://openalex.org/C59404180","wikidata":"https://www.wikidata.org/wiki/Q17013334","display_name":"Feature learning","level":2,"score":0.43164784},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.32251558},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tnnls.2015.2435783","pdf_url":null,"source":{"id":"https://openalex.org/S4210175523","display_name":"IEEE Transactions on Neural Networks and Learning Systems","issn_l":"2162-237X","issn":["2162-237X","2162-2388"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/26068879","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61422209"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61273317"},{"funder":"https://openalex.org/F4320335787","funder_display_name":"Fundamental Research Funds for the Central Universities","award_id":"K5051202053"},{"funder":"https://openalex.org/F4320336024","funder_display_name":"Specialized Research Fund for the Doctoral Program of Higher Education of China","award_id":"20130203110011"}],"datasets":[],"versions":[],"referenced_works_count":51,"referenced_works":["https://openalex.org/W1523879065","https://openalex.org/W1602107991","https://openalex.org/W1951111310","https://openalex.org/W1964069486","https://openalex.org/W1964155876","https://openalex.org/W1965126626","https://openalex.org/W1998399571","https://openalex.org/W2004935438","https://openalex.org/W2022508996","https://openalex.org/W2027091505","https://openalex.org/W2056281790","https://openalex.org/W2070177605","https://openalex.org/W2072128103","https://openalex.org/W2090822373","https://openalex.org/W2099049980","https://openalex.org/W2100495367","https://openalex.org/W2100623930","https://openalex.org/W2103212315","https://openalex.org/W2110519070","https://openalex.org/W2110798204","https://openalex.org/W2113913629","https://openalex.org/W2117130368","https://openalex.org/W2119574220","https://openalex.org/W2120641882","https://openalex.org/W2122585011","https://openalex.org/W2126176832","https://openalex.org/W2130020884","https://openalex.org/W2132424367","https://openalex.org/W2133003941","https://openalex.org/W2134392507","https://openalex.org/W2134905716","https://openalex.org/W2136655611","https://openalex.org/W2136922672","https://openalex.org/W2138957397","https://openalex.org/W2147800946","https://openalex.org/W2148461049","https://openalex.org/W2151137405","https://openalex.org/W2156798906","https://openalex.org/W2161381512","https://openalex.org/W2163605009","https://openalex.org/W2163922914","https://openalex.org/W2167998037","https://openalex.org/W2170140722","https://openalex.org/W2183112036","https://openalex.org/W2185133401","https://openalex.org/W2294059674","https://openalex.org/W2295582178","https://openalex.org/W2616180702","https://openalex.org/W4231109964","https://openalex.org/W4285719527","https://openalex.org/W44815768"],"related_works":["https://openalex.org/W3205829146","https://openalex.org/W3016428515","https://openalex.org/W2917196883","https://openalex.org/W2747205507","https://openalex.org/W2585813813","https://openalex.org/W2545123933","https://openalex.org/W2160730947","https://openalex.org/W2096748030","https://openalex.org/W2042726296","https://openalex.org/W2041414401"],"abstract_inverted_index":{"This":[0],"paper":[1],"presents":[2],"a":[3,30,40,62],"novel":[4],"change":[5,41,87],"detection":[6,21,42,88,173],"approach":[7,18],"for":[8,93],"synthetic":[9,72],"aperture":[10,73],"radar":[11,74],"images":[12,47],"based":[13,157],"on":[14,85,139,158],"deep":[15,31,51,94,167],"learning.":[16],"The":[17,34,54,90,106],"accomplishes":[19],"the":[20,23,49,58,80,83,86,113,116,119,124,130,133,147,153,159,172],"of":[22,60,82,115,132,152],"changed":[24,134],"and":[25,100,135,143,150],"unchanged":[26,136],"areas":[27],"by":[28,162],"designing":[29],"neural":[32,52],"network.":[33,53],"main":[35],"guideline":[36],"is":[37],"to":[38,103],"produce":[39],"map":[43],"directly":[44],"from":[45],"two":[46,120],"with":[48],"trained":[50],"method":[55],"can":[56,78,169],"omit":[57],"process":[59],"generating":[61],"difference":[63,68],"image":[64],"(DI)":[65],"that":[66],"shows":[67],"degrees":[69],"between":[70,118],"multitemporal":[71],"images.":[75,121],"Thus,":[76],"it":[77],"avoid":[79],"effect":[81],"DI":[84],"results.":[89],"learning":[91,99,109,112,129,168],"algorithm":[92],"architectures":[95],"includes":[96],"unsupervised":[97,107],"feature":[98,108],"supervised":[101,125],"fine-tuning":[102,126],"complete":[104],"classification.":[105],"aims":[110,127],"at":[111,128],"representation":[114],"relationships":[117],"In":[122],"addition,":[123],"concepts":[131],"pixels.":[137],"Experiments":[138],"real":[140],"data":[141],"sets":[142],"theoretical":[144],"analysis":[145],"indicate":[146],"advantages,":[148],"feasibility,":[149],"potential":[151],"proposed":[154],"method.":[155],"Moreover,":[156],"results":[160],"achieved":[161],"various":[163],"traditional":[164],"algorithms,":[165],"respectively,":[166],"further":[170],"improve":[171],"performance.":[174]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2221448138","counts_by_year":[{"year":2024,"cited_by_count":45},{"year":2023,"cited_by_count":59},{"year":2022,"cited_by_count":91},{"year":2021,"cited_by_count":86},{"year":2020,"cited_by_count":77},{"year":2019,"cited_by_count":86},{"year":2018,"cited_by_count":53},{"year":2017,"cited_by_count":33},{"year":2016,"cited_by_count":22},{"year":2015,"cited_by_count":2}],"updated_date":"2024-12-25T14:36:27.237482","created_date":"2016-06-24"}