{"id":"https://openalex.org/W1985032507","doi":"https://doi.org/10.1109/tnnls.2014.2325872","title":"Coupled Attribute Similarity Learning on Categorical Data","display_name":"Coupled Attribute Similarity Learning on Categorical Data","publication_year":2014,"publication_date":"2014-06-19","ids":{"openalex":"https://openalex.org/W1985032507","doi":"https://doi.org/10.1109/tnnls.2014.2325872","mag":"1985032507","pmid":"https://pubmed.ncbi.nlm.nih.gov/25794382"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tnnls.2014.2325872","pdf_url":null,"source":{"id":"https://openalex.org/S4210175523","display_name":"IEEE Transactions on Neural Networks and Learning Systems","issn_l":"2162-237X","issn":["2162-237X","2162-2388"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100428572","display_name":"Can Wang","orcid":"https://orcid.org/0000-0002-2890-0057"},"institutions":[{"id":"https://openalex.org/I1292875679","display_name":"Commonwealth Scientific and Industrial Research Organisation","ror":"https://ror.org/03qn8fb07","country_code":"AU","type":"government","lineage":["https://openalex.org/I1292875679","https://openalex.org/I2801453606","https://openalex.org/I4387156119"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Can Wang","raw_affiliation_strings":[", Commonwealth Scientific and Industrial Research Organisation, Sandy Bay, TAS, Australia"],"affiliations":[{"raw_affiliation_string":", Commonwealth Scientific and Industrial Research Organisation, Sandy Bay, TAS, Australia","institution_ids":["https://openalex.org/I1292875679"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100748278","display_name":"Xiangjun Dong","orcid":"https://orcid.org/0000-0002-5364-5844"},"institutions":[{"id":"https://openalex.org/I152269853","display_name":"Qilu University of Technology","ror":"https://ror.org/04hyzq608","country_code":"CN","type":"funder","lineage":["https://openalex.org/I152269853"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiangjun Dong","raw_affiliation_strings":["School of Information, Qilu University of Technology, Ji'nan, China"],"affiliations":[{"raw_affiliation_string":"School of Information, Qilu University of Technology, Ji'nan, China","institution_ids":["https://openalex.org/I152269853"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5090831580","display_name":"Fei Zhou","orcid":"https://orcid.org/0000-0003-1216-2181"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"funder","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Fei Zhou","raw_affiliation_strings":["Department of Electronic EngineeringGraduate School at Shenzhen, Tsinghua University, Shenzhen, China"],"affiliations":[{"raw_affiliation_string":"Department of Electronic EngineeringGraduate School at Shenzhen, Tsinghua University, Shenzhen, China","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5000798681","display_name":"Longbing Cao","orcid":"https://orcid.org/0000-0003-1562-9429"},"institutions":[{"id":"https://openalex.org/I114017466","display_name":"University of Technology Sydney","ror":"https://ror.org/03f0f6041","country_code":"AU","type":"funder","lineage":["https://openalex.org/I114017466"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Longbing Cao","raw_affiliation_strings":["[Advanced Analytics Institute, University of Technology at Sydney, Ultimo, NSW, Australia]"],"affiliations":[{"raw_affiliation_string":"[Advanced Analytics Institute, University of Technology at Sydney, Ultimo, NSW, Australia]","institution_ids":["https://openalex.org/I114017466"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5058644115","display_name":"Chi\u2010Hung Chi","orcid":"https://orcid.org/0000-0001-7271-1926"},"institutions":[{"id":"https://openalex.org/I1292875679","display_name":"Commonwealth Scientific and Industrial Research Organisation","ror":"https://ror.org/03qn8fb07","country_code":"AU","type":"government","lineage":["https://openalex.org/I1292875679","https://openalex.org/I2801453606","https://openalex.org/I4387156119"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Chi-Hung Chi","raw_affiliation_strings":[", Commonwealth Scientific and Industrial Research Organisation, Sandy Bay, TAS, Australia"],"affiliations":[{"raw_affiliation_string":", Commonwealth Scientific and Industrial Research Organisation, Sandy Bay, TAS, Australia","institution_ids":["https://openalex.org/I1292875679"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":4,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":5.291,"has_fulltext":false,"cited_by_count":69,"citation_normalized_percentile":{"value":0.942389,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":"26","issue":"4","first_page":"781","last_page":"797"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11550","display_name":"Text and Document Classification Technologies","score":0.9948,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11550","display_name":"Text and Document Classification Technologies","score":0.9948,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10637","display_name":"Advanced Clustering Algorithms Research","score":0.9943,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11063","display_name":"Rough Sets and Fuzzy Logic","score":0.9906,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/categorical-variable","display_name":"Categorical variable","score":0.75318},{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.67008877},{"id":"https://openalex.org/keywords/similarity-measure","display_name":"Similarity measure","score":0.46962646},{"id":"https://openalex.org/keywords/data-set","display_name":"Data set","score":0.41644132}],"concepts":[{"id":"https://openalex.org/C5274069","wikidata":"https://www.wikidata.org/wiki/Q2285707","display_name":"Categorical variable","level":2,"score":0.75318},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.67008877},{"id":"https://openalex.org/C64543145","wikidata":"https://www.wikidata.org/wiki/Q162942","display_name":"Intersection (aeronautics)","level":2,"score":0.6386559},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.6018776},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.5811877},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.533236},{"id":"https://openalex.org/C75814411","wikidata":"https://www.wikidata.org/wiki/Q4818714","display_name":"Attribute domain","level":3,"score":0.5192949},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.482527},{"id":"https://openalex.org/C176217482","wikidata":"https://www.wikidata.org/wiki/Q860554","display_name":"Metric (unit)","level":2,"score":0.47975147},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4788361},{"id":"https://openalex.org/C2776517306","wikidata":"https://www.wikidata.org/wiki/Q29017317","display_name":"Similarity measure","level":2,"score":0.46962646},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.46926066},{"id":"https://openalex.org/C58489278","wikidata":"https://www.wikidata.org/wiki/Q1172284","display_name":"Data set","level":2,"score":0.41644132},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.39144298},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.28186232},{"id":"https://openalex.org/C111012933","wikidata":"https://www.wikidata.org/wiki/Q3137210","display_name":"Rough set","level":2,"score":0.17035913},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.09004125},{"id":"https://openalex.org/C21547014","wikidata":"https://www.wikidata.org/wiki/Q1423657","display_name":"Operations management","level":1,"score":0.0},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C146978453","wikidata":"https://www.wikidata.org/wiki/Q3798668","display_name":"Aerospace engineering","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tnnls.2014.2325872","pdf_url":null,"source":{"id":"https://openalex.org/S4210175523","display_name":"IEEE Transactions on Neural Networks and Learning Systems","issn_l":"2162-237X","issn":["2162-237X","2162-2388"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/25794382","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61301183"},{"funder":"https://openalex.org/F4320321543","funder_display_name":"China Postdoctoral Science Foundation","award_id":"2013M540947"}],"datasets":[],"versions":[],"referenced_works_count":35,"referenced_works":["https://openalex.org/W1560541823","https://openalex.org/W1562135275","https://openalex.org/W1585529040","https://openalex.org/W1594924988","https://openalex.org/W1611112381","https://openalex.org/W1647729745","https://openalex.org/W1990643970","https://openalex.org/W1995502855","https://openalex.org/W2003048487","https://openalex.org/W2009278541","https://openalex.org/W2025679133","https://openalex.org/W2029064186","https://openalex.org/W2031557486","https://openalex.org/W2032916024","https://openalex.org/W2035835285","https://openalex.org/W2041674806","https://openalex.org/W2043500922","https://openalex.org/W2051224630","https://openalex.org/W2057712948","https://openalex.org/W2064686951","https://openalex.org/W2105896409","https://openalex.org/W2122943553","https://openalex.org/W2132914434","https://openalex.org/W2133114417","https://openalex.org/W2146442966","https://openalex.org/W2157168442","https://openalex.org/W2163952039","https://openalex.org/W2169658215","https://openalex.org/W2798115135","https://openalex.org/W2999729612","https://openalex.org/W4234315553","https://openalex.org/W4242221364","https://openalex.org/W4245412318","https://openalex.org/W80247037","https://openalex.org/W91849029"],"related_works":["https://openalex.org/W65104662","https://openalex.org/W4386799044","https://openalex.org/W4297454206","https://openalex.org/W2773208253","https://openalex.org/W2560646951","https://openalex.org/W2362286668","https://openalex.org/W2133382151","https://openalex.org/W2092161674","https://openalex.org/W1871748041","https://openalex.org/W1549395822"],"abstract_inverted_index":{"Attribute":[0],"independence":[1],"has":[2,14],"been":[3,15],"taken":[4],"as":[5,141,143],"a":[6,68,104,117,224],"major":[7],"assumption":[8],"in":[9,27,40,71,175,299],"the":[10,55,83,89,125,133,147,157,162,191,198,202,219,242,250,263,296],"limited":[11],"research":[12],"that":[13,102,249],"conducted":[16],"on":[17,49,146,201,228,233,304],"similarity":[18,99,107,128,135,159,163,254],"analysis":[19,189],"for":[20,79,109,156,206,272],"categorical":[21,73,166,275,283],"data,":[22],"especially":[23,273],"unsupervised":[24],"learning.":[25],"However,":[26],"real-world":[28],"data":[29,74,90,208,213,236,276,306],"sources,":[30],"attributes":[31,174,271],"are":[32,154,290],"more":[33],"or":[34],"less":[35],"associated":[36],"with":[37,112,172],"each":[38],"other":[39,173],"terms":[41,176,300],"of":[42,57,120,177,197,212,301],"certain":[43],"coupling":[44],"relationships.":[45],"Accordingly,":[46],"recent":[47],"works":[48],"attribute":[50,58,62,106,113,121,131,253],"dependency":[51],"aggregation":[52],"have":[53],"introduced":[54],"co-occurrence":[56],"values":[59,167],"to":[60,115,160],"explore":[61],"coupling,":[63],"but":[64],"they":[65,293],"only":[66],"present":[67],"local":[69],"picture":[70,119],"analyzing":[72],"similarity.":[75,122],"This":[76,93],"is":[77,239,255],"inadequate":[78],"deep":[80],"analysis,":[81],"and":[82,132,184,194,215,231,257,260,265,269,288,292,308],"computational":[84],"complexity":[85],"grows":[86],"exponentially":[87],"when":[88],"scale":[91],"increases.":[92],"paper":[94],"proposes":[95],"an":[96,130],"efficient":[97],"data-driven":[98],"learning":[100],"approach":[101],"generates":[103],"coupled":[105,220,252,282],"measure":[108,199],"nominal":[110],"objects":[111],"couplings":[114],"capture":[116,262],"global":[118,266],"It":[123],"involves":[124],"frequency-based":[126],"intra-coupled":[127],"within":[129,268],"inter-coupled":[134,158],"upon":[136],"value":[137],"co-occurrences":[138],"between":[139,164,270],"attributes,":[140],"well":[142],"their":[144,170],"integration":[145],"object":[148],"level.":[149],"In":[150,278],"particular,":[151],"four":[152],"measures":[153,230],"designed":[155],"calculate":[161],"two":[165,280],"by":[168,241],"considering":[169],"relationships":[171],"power":[178],"set,":[179,181,183,204],"universal":[180],"joint":[182],"intersection":[185,203],"set.":[186],"The":[187,245],"theoretical":[188],"reveals":[190],"equivalent":[192],"accuracy":[193],"superior":[195],"efficiency":[196],"based":[200],"particularly":[205],"large-scale":[207,274],"sets.":[209,277],"Intensive":[210],"experiments":[211],"structure":[214],"clustering":[216,284,302],"algorithms":[217,232],"incorporating":[218],"dissimilarity":[221],"metric":[222],"achieve":[223],"significant":[225],"performance":[226],"improvement":[227],"state-of-the-art":[229],"13":[234],"UCI":[235,305],"sets,":[237],"which":[238],"confirmed":[240],"statistical":[243],"analysis.":[244],"experiment":[246],"results":[247],"show":[248],"proposed":[251],"generic,":[256],"can":[258],"effectively":[259],"efficiently":[261],"intrinsic":[264],"interactions":[267],"addition,":[279],"new":[281],"algorithms,":[285],"i.e.,":[286],"CROCK":[287],"CLIMBO":[289],"proposed,":[291],"both":[294],"outperform":[295],"original":[297],"ones":[298],"quality":[303],"sets":[307],"bibliographic":[309],"data.":[310]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1985032507","counts_by_year":[{"year":2024,"cited_by_count":4},{"year":2023,"cited_by_count":6},{"year":2022,"cited_by_count":5},{"year":2021,"cited_by_count":11},{"year":2020,"cited_by_count":7},{"year":2019,"cited_by_count":9},{"year":2018,"cited_by_count":11},{"year":2017,"cited_by_count":9},{"year":2016,"cited_by_count":6},{"year":2015,"cited_by_count":1}],"updated_date":"2025-04-17T20:11:15.377122","created_date":"2016-06-24"}