{"id":"https://openalex.org/W4285505938","doi":"https://doi.org/10.1109/tmi.2022.3191398","title":"Unsupervised Representation Learning for Tissue Segmentation in Histopathological Images: From Global to Local Contrast","display_name":"Unsupervised Representation Learning for Tissue Segmentation in Histopathological Images: From Global to Local Contrast","publication_year":2022,"publication_date":"2022-07-15","ids":{"openalex":"https://openalex.org/W4285505938","doi":"https://doi.org/10.1109/tmi.2022.3191398","pmid":"https://pubmed.ncbi.nlm.nih.gov/35839184"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tmi.2022.3191398","pdf_url":null,"source":{"id":"https://openalex.org/S58069681","display_name":"IEEE Transactions on Medical Imaging","issn_l":"0278-0062","issn":["0278-0062","1558-254X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5060638031","display_name":"Zeyu Gao","orcid":"https://orcid.org/0000-0003-2365-8318"},"institutions":[{"id":"https://openalex.org/I87445476","display_name":"Xi'an Jiaotong University","ror":"https://ror.org/017zhmm22","country_code":"CN","type":"funder","lineage":["https://openalex.org/I87445476"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zeyu Gao","raw_affiliation_strings":["School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China","institution_ids":["https://openalex.org/I87445476"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5002877635","display_name":"Chang Jia","orcid":"https://orcid.org/0000-0001-7567-5289"},"institutions":[{"id":"https://openalex.org/I87445476","display_name":"Xi'an Jiaotong University","ror":"https://ror.org/017zhmm22","country_code":"CN","type":"funder","lineage":["https://openalex.org/I87445476"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chang Jia","raw_affiliation_strings":["School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China","institution_ids":["https://openalex.org/I87445476"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101397388","display_name":"Yang Li","orcid":"https://orcid.org/0000-0003-0483-0899"},"institutions":[{"id":"https://openalex.org/I87445476","display_name":"Xi'an Jiaotong University","ror":"https://ror.org/017zhmm22","country_code":"CN","type":"funder","lineage":["https://openalex.org/I87445476"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yang Li","raw_affiliation_strings":["School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China","institution_ids":["https://openalex.org/I87445476"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5006451453","display_name":"Xianli Zhang","orcid":"https://orcid.org/0000-0003-1995-3904"},"institutions":[{"id":"https://openalex.org/I87445476","display_name":"Xi'an Jiaotong University","ror":"https://ror.org/017zhmm22","country_code":"CN","type":"funder","lineage":["https://openalex.org/I87445476"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xianli Zhang","raw_affiliation_strings":["School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China","institution_ids":["https://openalex.org/I87445476"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5000373444","display_name":"Bangyang Hong","orcid":null},"institutions":[{"id":"https://openalex.org/I87445476","display_name":"Xi'an Jiaotong University","ror":"https://ror.org/017zhmm22","country_code":"CN","type":"funder","lineage":["https://openalex.org/I87445476"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Bangyang Hong","raw_affiliation_strings":["School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China","institution_ids":["https://openalex.org/I87445476"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102841028","display_name":"Jialun Wu","orcid":"https://orcid.org/0000-0002-9015-7487"},"institutions":[{"id":"https://openalex.org/I87445476","display_name":"Xi'an Jiaotong University","ror":"https://ror.org/017zhmm22","country_code":"CN","type":"funder","lineage":["https://openalex.org/I87445476"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jialun Wu","raw_affiliation_strings":["School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China","institution_ids":["https://openalex.org/I87445476"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5030762002","display_name":"Tieliang Gong","orcid":"https://orcid.org/0000-0002-3840-441X"},"institutions":[{"id":"https://openalex.org/I87445476","display_name":"Xi'an Jiaotong University","ror":"https://ror.org/017zhmm22","country_code":"CN","type":"funder","lineage":["https://openalex.org/I87445476"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Tieliang Gong","raw_affiliation_strings":["School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China","institution_ids":["https://openalex.org/I87445476"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5065529317","display_name":"Chunbao Wang","orcid":"https://orcid.org/0000-0002-8795-0142"},"institutions":[{"id":"https://openalex.org/I4210121771","display_name":"First Affiliated Hospital of Xi'an Jiaotong University","ror":"https://ror.org/02tbvhh96","country_code":"CN","type":"healthcare","lineage":["https://openalex.org/I4210121771"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chunbao Wang","raw_affiliation_strings":["Department of Pathology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China"],"affiliations":[{"raw_affiliation_string":"Department of Pathology, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China","institution_ids":["https://openalex.org/I4210121771"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5091017287","display_name":"Deyu Meng","orcid":"https://orcid.org/0000-0002-1294-8283"},"institutions":[{"id":"https://openalex.org/I87445476","display_name":"Xi'an Jiaotong University","ror":"https://ror.org/017zhmm22","country_code":"CN","type":"funder","lineage":["https://openalex.org/I87445476"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Deyu Meng","raw_affiliation_strings":["School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, China"],"affiliations":[{"raw_affiliation_string":"School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, China","institution_ids":["https://openalex.org/I87445476"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5051649145","display_name":"Yefeng Zheng","orcid":"https://orcid.org/0000-0003-2195-2847"},"institutions":[{"id":"https://openalex.org/I2250653659","display_name":"Tencent (China)","ror":"https://ror.org/00hhjss72","country_code":"CN","type":"funder","lineage":["https://openalex.org/I2250653659"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yefeng Zheng","raw_affiliation_strings":["Tencent Jarvis Laboratory, Shenzhen, China"],"affiliations":[{"raw_affiliation_string":"Tencent Jarvis Laboratory, Shenzhen, China","institution_ids":["https://openalex.org/I2250653659"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100369793","display_name":"Chen Li","orcid":"https://orcid.org/0000-0002-0079-3106"},"institutions":[{"id":"https://openalex.org/I87445476","display_name":"Xi'an Jiaotong University","ror":"https://ror.org/017zhmm22","country_code":"CN","type":"funder","lineage":["https://openalex.org/I87445476"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chen Li","raw_affiliation_strings":["School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an, China","institution_ids":["https://openalex.org/I87445476"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.968,"has_fulltext":false,"cited_by_count":14,"citation_normalized_percentile":{"value":0.999972,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":"41","issue":"12","first_page":"3611","last_page":"3623"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9968,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T14510","display_name":"Medical Imaging and Analysis","score":0.9921,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.69684505},{"id":"https://openalex.org/keywords/component","display_name":"Component (thermodynamics)","score":0.4400949}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8026675},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.75517213},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.7220792},{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.69684505},{"id":"https://openalex.org/C125411270","wikidata":"https://www.wikidata.org/wiki/Q18653","display_name":"Encoding (memory)","level":2,"score":0.5989829},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5558398},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.5189488},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.46700418},{"id":"https://openalex.org/C2776502983","wikidata":"https://www.wikidata.org/wiki/Q690182","display_name":"Contrast (vision)","level":2,"score":0.4653965},{"id":"https://openalex.org/C2776321320","wikidata":"https://www.wikidata.org/wiki/Q857525","display_name":"Annotation","level":2,"score":0.46429238},{"id":"https://openalex.org/C2780801425","wikidata":"https://www.wikidata.org/wiki/Q5164392","display_name":"Construct (python library)","level":2,"score":0.44806895},{"id":"https://openalex.org/C168167062","wikidata":"https://www.wikidata.org/wiki/Q1117970","display_name":"Component (thermodynamics)","level":2,"score":0.4400949},{"id":"https://openalex.org/C160633673","wikidata":"https://www.wikidata.org/wiki/Q355198","display_name":"Pixel","level":2,"score":0.43002906},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C97355855","wikidata":"https://www.wikidata.org/wiki/Q11473","display_name":"Thermodynamics","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tmi.2022.3191398","pdf_url":null,"source":{"id":"https://openalex.org/S58069681","display_name":"IEEE Transactions on Medical Imaging","issn_l":"0278-0062","issn":["0278-0062","1558-254X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/35839184","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Reduced inequalities","id":"https://metadata.un.org/sdg/10","score":0.65}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"62106191"},{"funder":"https://openalex.org/F4320327609","funder_display_name":"China Knowledge Centre for Engineering Sciences and Technology","award_id":null},{"funder":"https://openalex.org/F4320330193","funder_display_name":"Chinese Academy of Engineering","award_id":null},{"funder":"https://openalex.org/F4320334010","funder_display_name":"Key Research and Development Program of Ningxia","award_id":"2022BEG02025"},{"funder":"https://openalex.org/F4320336350","funder_display_name":"Key Research and Development Projects of Shaanxi Province","award_id":"2021GXLH-Z-095"}],"datasets":[],"versions":[],"referenced_works_count":45,"referenced_works":["https://openalex.org/W1901129140","https://openalex.org/W1903029394","https://openalex.org/W1908864745","https://openalex.org/W1984692997","https://openalex.org/W2096283457","https://openalex.org/W2118246710","https://openalex.org/W2120431466","https://openalex.org/W2126547130","https://openalex.org/W2187089797","https://openalex.org/W2194775991","https://openalex.org/W2282915343","https://openalex.org/W2288892845","https://openalex.org/W2582546187","https://openalex.org/W2592905743","https://openalex.org/W2772723798","https://openalex.org/W2790432037","https://openalex.org/W2884436604","https://openalex.org/W2885343725","https://openalex.org/W2900118953","https://openalex.org/W2911471795","https://openalex.org/W2911879897","https://openalex.org/W2922239620","https://openalex.org/W2948012107","https://openalex.org/W2953070460","https://openalex.org/W2962914239","https://openalex.org/W2974825848","https://openalex.org/W3005680577","https://openalex.org/W3028078009","https://openalex.org/W3035060554","https://openalex.org/W3035241330","https://openalex.org/W3035524453","https://openalex.org/W3087075955","https://openalex.org/W3091546937","https://openalex.org/W3107410755","https://openalex.org/W3120430728","https://openalex.org/W3125555368","https://openalex.org/W3126037100","https://openalex.org/W3134324269","https://openalex.org/W3171581326","https://openalex.org/W3172615411","https://openalex.org/W3177029726","https://openalex.org/W3204103340","https://openalex.org/W3212889265","https://openalex.org/W4287755086","https://openalex.org/W4297808394"],"related_works":["https://openalex.org/W4205463238","https://openalex.org/W3103844505","https://openalex.org/W2965546495","https://openalex.org/W2761785940","https://openalex.org/W259157601","https://openalex.org/W2377979023","https://openalex.org/W2361861616","https://openalex.org/W2263699433","https://openalex.org/W2218034408","https://openalex.org/W2153315159"],"abstract_inverted_index":{"Tissue":[0],"segmentation":[1,35,88,199,211,247],"is":[2,230],"an":[3,120],"essential":[4],"task":[5,17,122,138,158],"in":[6,201],"computational":[7],"pathology.":[8],"However,":[9],"relevant":[10],"datasets":[11],"for":[12,30,45,85,107],"such":[13],"a":[14,32,42,136,156,168],"pixel-level":[15,83,157],"classification":[16],"are":[18,75],"hard":[19],"to":[20,23,60,105,123,139,159,196,232],"obtain":[21],"due":[22],"the":[24,47,61,86,125,132,152,173,181,187],"difficulty":[25],"of":[26,50,78,143,163],"annotation,":[27],"bringing":[28],"obstacles":[29],"training":[31],"deep":[33,51],"learning-based":[34],"model.":[36],"Recently,":[37],"contrastive":[38,58,67,97,234],"learning":[39,52,68,98,235],"has":[40],"provided":[41],"feasible":[43],"solution":[44],"mitigating":[46],"heavy":[48],"reliance":[49],"models":[53],"on":[54,71,208],"annotation.":[55],"Nevertheless,":[56],"applying":[57],"loss":[59],"most":[62],"abstract":[63],"image":[64],"representations,":[65],"existing":[66,233],"frameworks":[69],"focus":[70],"global":[72,104],"features,":[73],"therefore,":[74],"less":[76],"capable":[77],"encoding":[79,108,131,151,172],"finer-grained":[80],"features":[81,110],"(e.g.,":[82],"discrimination)":[84],"tissue":[87,128,148,165,198,210],"task.":[89],"Enlightened":[90],"by":[91],"domain":[92],"knowledge,":[93],"we":[94,117],"design":[95],"three":[96],"tasks":[99,200],"with":[100,146,218,242],"multi-granularity":[101],"views":[102],"(from":[103],"local)":[106],"necessary":[109],"into":[111],"representations":[112,142,162,183],"without":[113],"accessing":[114],"annotations.":[115,222],"Specifically,":[116],"construct:":[118],"(1)":[119],"image-level":[121],"capture":[124,186],"difference":[126],"between":[127],"components,":[129,149],"i.e.,":[130,150,171],"component":[133],"discrimination;":[134,154],"(2)":[135],"superpixel-level":[137],"learn":[140],"discriminative":[141],"local":[144,169],"regions":[145],"different":[147,164],"prototype":[153],"(3)":[155],"encourage":[160],"similar":[161],"components":[166],"within":[167],"region,":[170],"spatial":[174],"smoothness.":[175],"Through":[176],"our":[177,228],"global-to-local":[178],"pre-training":[179],"strategy,":[180],"learned":[182],"can":[184,238],"reasonably":[185],"domain-specific":[188],"and":[189,237,245],"fine-grained":[190],"patterns,":[191],"making":[192],"them":[193],"easily":[194,240],"transferable":[195],"various":[197],"histopathological":[202],"images.":[203],"We":[204],"conduct":[205],"extensive":[206],"experiments":[207],"two":[209,215],"datasets,":[212],"while":[213],"considering":[214],"real-world":[216],"scenarios":[217],"limited":[219],"or":[220],"sparse":[221],"The":[223],"experimental":[224],"results":[225],"demonstrate":[226],"that":[227],"framework":[229],"superior":[231],"methods":[236],"be":[239],"combined":[241],"weakly":[243],"supervised":[244],"semi-supervised":[246],"methods.":[248]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4285505938","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":6},{"year":2023,"cited_by_count":4},{"year":2022,"cited_by_count":3}],"updated_date":"2025-04-22T08:00:19.064396","created_date":"2022-07-15"}