{"id":"https://openalex.org/W3084350493","doi":"https://doi.org/10.1109/tmi.2020.3022693","title":"Learning Geodesic Active Contours for Embedding Object Global Information in Segmentation CNNs","display_name":"Learning Geodesic Active Contours for Embedding Object Global Information in Segmentation CNNs","publication_year":2020,"publication_date":"2020-09-08","ids":{"openalex":"https://openalex.org/W3084350493","doi":"https://doi.org/10.1109/tmi.2020.3022693","mag":"3084350493","pmid":"https://pubmed.ncbi.nlm.nih.gov/32897860"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tmi.2020.3022693","pdf_url":null,"source":{"id":"https://openalex.org/S58069681","display_name":"IEEE Transactions on Medical Imaging","issn_l":"0278-0062","issn":["0278-0062","1558-254X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100678900","display_name":"Jun Ma","orcid":"https://orcid.org/0000-0002-9739-0855"},"institutions":[{"id":"https://openalex.org/I36399199","display_name":"Nanjing University of Science and Technology","ror":"https://ror.org/00xp9wg62","country_code":"CN","type":"funder","lineage":["https://openalex.org/I36399199"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jun Ma","raw_affiliation_strings":["Department of Mathematics, Nanjing University of Science and Technology, Nanjing, China"],"affiliations":[{"raw_affiliation_string":"Department of Mathematics, Nanjing University of Science and Technology, Nanjing, China","institution_ids":["https://openalex.org/I36399199"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100781005","display_name":"Jian He","orcid":"https://orcid.org/0000-0002-8425-3771"},"institutions":[{"id":"https://openalex.org/I4210111013","display_name":"Nanjing Drum Tower Hospital","ror":"https://ror.org/026axqv54","country_code":"CN","type":"healthcare","lineage":["https://openalex.org/I4210111013"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jian He","raw_affiliation_strings":["Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China"],"affiliations":[{"raw_affiliation_string":"Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China","institution_ids":["https://openalex.org/I4210111013"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101603577","display_name":"Xiaoping Yang","orcid":"https://orcid.org/0000-0002-8298-1273"},"institutions":[{"id":"https://openalex.org/I881766915","display_name":"Nanjing University","ror":"https://ror.org/01rxvg760","country_code":"CN","type":"funder","lineage":["https://openalex.org/I881766915"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiaoping Yang","raw_affiliation_strings":["Department of Mathematics, Nanjing University, Nanjing, China"],"affiliations":[{"raw_affiliation_string":"Department of Mathematics, Nanjing University, Nanjing, China","institution_ids":["https://openalex.org/I881766915"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":3.26,"has_fulltext":false,"cited_by_count":51,"citation_normalized_percentile":{"value":0.999976,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":"40","issue":"1","first_page":"93","last_page":"104"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T14510","display_name":"Medical Imaging and Analysis","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T14510","display_name":"Medical Imaging and Analysis","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/active-contour-model","display_name":"Active contour model","score":0.6032621},{"id":"https://openalex.org/keywords/ground-truth","display_name":"Ground truth","score":0.56365895},{"id":"https://openalex.org/keywords/segmentation-based-object-categorization","display_name":"Segmentation-based object categorization","score":0.5419671}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.74555254},{"id":"https://openalex.org/C165818556","wikidata":"https://www.wikidata.org/wiki/Q213488","display_name":"Geodesic","level":2,"score":0.6642145},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.65031743},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.62625074},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.616737},{"id":"https://openalex.org/C112353826","wikidata":"https://www.wikidata.org/wiki/Q127313","display_name":"Active contour model","level":4,"score":0.6032621},{"id":"https://openalex.org/C153008295","wikidata":"https://www.wikidata.org/wiki/Q6535093","display_name":"Level set (data structures)","level":2,"score":0.59679323},{"id":"https://openalex.org/C62354387","wikidata":"https://www.wikidata.org/wiki/Q875399","display_name":"Boundary (topology)","level":2,"score":0.5652547},{"id":"https://openalex.org/C146849305","wikidata":"https://www.wikidata.org/wiki/Q370766","display_name":"Ground truth","level":2,"score":0.56365895},{"id":"https://openalex.org/C25694479","wikidata":"https://www.wikidata.org/wiki/Q7446278","display_name":"Segmentation-based object categorization","level":5,"score":0.5419671},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.5391015},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.534668},{"id":"https://openalex.org/C65885262","wikidata":"https://www.wikidata.org/wiki/Q7429708","display_name":"Scale-space segmentation","level":4,"score":0.5055542},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.2728215},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tmi.2020.3022693","pdf_url":null,"source":{"id":"https://openalex.org/S58069681","display_name":"IEEE Transactions on Medical Imaging","issn_l":"0278-0062","issn":["0278-0062","1558-254X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/32897860","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Sustainable cities and communities","id":"https://metadata.un.org/sdg/11","score":0.49}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"11153105"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"11971229"}],"datasets":[],"versions":[],"referenced_works_count":49,"referenced_works":["https://openalex.org/W1522301498","https://openalex.org/W1901129140","https://openalex.org/W1903029394","https://openalex.org/W1979393293","https://openalex.org/W2116040950","https://openalex.org/W2125186487","https://openalex.org/W2127890285","https://openalex.org/W2194775991","https://openalex.org/W2404618390","https://openalex.org/W2464708700","https://openalex.org/W2555096873","https://openalex.org/W2586834759","https://openalex.org/W2592929672","https://openalex.org/W2605570189","https://openalex.org/W2758258698","https://openalex.org/W2804047627","https://openalex.org/W2888358068","https://openalex.org/W2900298334","https://openalex.org/W2907824800","https://openalex.org/W2910094941","https://openalex.org/W2911631536","https://openalex.org/W2915126261","https://openalex.org/W2920149494","https://openalex.org/W2921676720","https://openalex.org/W2953122916","https://openalex.org/W2962731543","https://openalex.org/W2962914239","https://openalex.org/W2963627347","https://openalex.org/W2964121744","https://openalex.org/W2964227007","https://openalex.org/W2965669393","https://openalex.org/W2966434031","https://openalex.org/W2970971581","https://openalex.org/W2979524261","https://openalex.org/W2979708377","https://openalex.org/W2985492700","https://openalex.org/W2995878626","https://openalex.org/W2996290406","https://openalex.org/W2998663558","https://openalex.org/W3014974815","https://openalex.org/W3035546112","https://openalex.org/W3094183857","https://openalex.org/W3103562302","https://openalex.org/W3104211200","https://openalex.org/W3112701542","https://openalex.org/W3132455321","https://openalex.org/W3211330693","https://openalex.org/W4295312788","https://openalex.org/W4309233581"],"related_works":["https://openalex.org/W3144569342","https://openalex.org/W2945274617","https://openalex.org/W2380607399","https://openalex.org/W2373659438","https://openalex.org/W2368150111","https://openalex.org/W2299318636","https://openalex.org/W2185902295","https://openalex.org/W2125739208","https://openalex.org/W2118381968","https://openalex.org/W2098360446"],"abstract_inverted_index":{"Most":[0],"existing":[1],"CNNs-based":[2],"segmentation":[3,55,70,93,120,181,198,212],"methods":[4,155,176],"rely":[5],"on":[6,10,128,177,215],"local":[7],"appearances":[8],"learned":[9],"the":[11,18,27,37,54,69,77,86,92,97,106,114,119,217],"regular":[12],"image":[13,107,236],"grid,":[14],"without":[15],"consideration":[16],"of":[17,88],"object":[19,28],"global":[20,29,205],"information.":[21],"This":[22],"article":[23],"aims":[24],"to":[25,65,109,122],"embed":[26],"geometric":[30],"information":[31,206],"into":[32],"a":[33,45],"learning":[34,139],"framework":[35],"via":[36],"classical":[38],"geodesic":[39,62,89,115],"active":[40,63,90,140],"contours":[41],"(GAC).":[42],"We":[43],"propose":[44],"level":[46,98],"set":[47,99],"function":[48],"(LSF)":[49],"regression":[50],"network,":[51],"supervised":[52],"by":[53,207],"ground":[56,59],"truth,":[57],"LSF":[58],"truth":[60],"and":[61,113,196,220,234],"contours,":[64,91],"not":[66],"only":[67],"generate":[68],"probabilistic":[71],"map":[72],"but":[73],"also":[74,165],"directly":[75],"minimize":[76],"GAC":[78,208],"energy":[79],"functional":[80],"in":[81,96,193,226],"an":[82],"end-to-end":[83],"manner.":[84],"With":[85],"help":[87],"contour,":[94],"embedded":[95],"function,":[100],"can":[101,117,145,186,209,241],"be":[102,242],"globally":[103],"driven":[104],"towards":[105],"boundary":[108,161,218,239],"obtain":[110,188],"lower":[111],"energy,":[112],"constraint":[116],"lead":[118],"result":[121],"have":[123],"fewer":[124],"outliers.":[125],"Extensive":[126],"experiments":[127],"four":[129],"public":[130],"datasets":[131],"show":[132],"that":[133,156,203],"(1)":[134],"compared":[135,151,173],"with":[136,152,168,174],"state-of-the-art":[137],"(SOTA)":[138],"contour":[141],"methods,":[142],"our":[143,163,184],"method":[144,164,185],"achieve":[146],"significantly":[147,210],"better":[148],"performance;":[149],"(2)":[150],"recent":[153],"SOTA":[154,175],"are":[157],"designed":[158],"for":[159],"reducing":[160,216],"errors,":[162],"outperforms":[166],"them":[167],"more":[169],"accurate":[170],"boundaries;":[171],"(3)":[172],"two":[178],"popular":[179],"multi-class":[180],"challenge":[182],"datasets,":[183],"still":[187],"superior":[189],"or":[190],"competitive":[191],"results":[192],"both":[194],"organ":[195,230],"tumor":[197],"tasks.":[199],"Our":[200],"study":[201],"demonstrates":[202],"introducing":[204],"improve":[211],"performance,":[213],"especially":[214],"errors":[219,240],"outliers,":[221],"which":[222],"is":[223],"very":[224,243],"useful":[225],"applications":[227],"such":[228],"as":[229],"transplantation":[231],"surgical":[232],"planning":[233],"multi-modality":[235],"registration":[237],"where":[238],"harmful.":[244]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3084350493","counts_by_year":[{"year":2025,"cited_by_count":3},{"year":2024,"cited_by_count":7},{"year":2023,"cited_by_count":20},{"year":2022,"cited_by_count":7},{"year":2021,"cited_by_count":9},{"year":2020,"cited_by_count":5}],"updated_date":"2025-04-29T09:47:18.188522","created_date":"2020-09-14"}