{"id":"https://openalex.org/W2795142235","doi":"https://doi.org/10.1109/tmi.2018.2821244","title":"Automatic Segmentation of Acute Ischemic Stroke From DWI Using 3-D Fully Convolutional DenseNets","display_name":"Automatic Segmentation of Acute Ischemic Stroke From DWI Using 3-D Fully Convolutional DenseNets","publication_year":2018,"publication_date":"2018-03-30","ids":{"openalex":"https://openalex.org/W2795142235","doi":"https://doi.org/10.1109/tmi.2018.2821244","mag":"2795142235","pmid":"https://pubmed.ncbi.nlm.nih.gov/29994088"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tmi.2018.2821244","pdf_url":null,"source":{"id":"https://openalex.org/S58069681","display_name":"IEEE Transactions on Medical Imaging","issn_l":"0278-0062","issn":["0278-0062","1558-254X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5016148278","display_name":"Rongzhao Zhang","orcid":"https://orcid.org/0000-0001-8103-5210"},"institutions":[{"id":"https://openalex.org/I177725633","display_name":"Chinese University of Hong Kong","ror":"https://ror.org/00t33hh48","country_code":"HK","type":"funder","lineage":["https://openalex.org/I177725633"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Rongzhao Zhang","raw_affiliation_strings":["Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong"],"affiliations":[{"raw_affiliation_string":"Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong","institution_ids":["https://openalex.org/I177725633"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5011662097","display_name":"Lei Zhao","orcid":"https://orcid.org/0000-0001-5125-974X"},"institutions":[{"id":"https://openalex.org/I177725633","display_name":"Chinese University of Hong Kong","ror":"https://ror.org/00t33hh48","country_code":"HK","type":"funder","lineage":["https://openalex.org/I177725633"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Lei Zhao","raw_affiliation_strings":["Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong"],"affiliations":[{"raw_affiliation_string":"Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong","institution_ids":["https://openalex.org/I177725633"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5046262074","display_name":"Wutao Lou","orcid":"https://orcid.org/0000-0002-6844-2847"},"institutions":[{"id":"https://openalex.org/I177725633","display_name":"Chinese University of Hong Kong","ror":"https://ror.org/00t33hh48","country_code":"HK","type":"funder","lineage":["https://openalex.org/I177725633"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Wutao Lou","raw_affiliation_strings":["Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong"],"affiliations":[{"raw_affiliation_string":"Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong","institution_ids":["https://openalex.org/I177725633"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5066433473","display_name":"Jill Abrigo","orcid":"https://orcid.org/0000-0001-5238-709X"},"institutions":[{"id":"https://openalex.org/I177725633","display_name":"Chinese University of Hong Kong","ror":"https://ror.org/00t33hh48","country_code":"HK","type":"funder","lineage":["https://openalex.org/I177725633"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Jill M. Abrigo","raw_affiliation_strings":["Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong"],"affiliations":[{"raw_affiliation_string":"Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong","institution_ids":["https://openalex.org/I177725633"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5021008843","display_name":"Vincent Mok","orcid":"https://orcid.org/0000-0002-8102-8835"},"institutions":[{"id":"https://openalex.org/I177725633","display_name":"Chinese University of Hong Kong","ror":"https://ror.org/00t33hh48","country_code":"HK","type":"funder","lineage":["https://openalex.org/I177725633"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Vincent C. T. Mok","raw_affiliation_strings":["Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong"],"affiliations":[{"raw_affiliation_string":"Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Hong Kong","institution_ids":["https://openalex.org/I177725633"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5058365723","display_name":"Chiu\u2010Wing Winnie Chu","orcid":"https://orcid.org/0000-0003-4962-4132"},"institutions":[{"id":"https://openalex.org/I177725633","display_name":"Chinese University of Hong Kong","ror":"https://ror.org/00t33hh48","country_code":"HK","type":"funder","lineage":["https://openalex.org/I177725633"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Winnie C. W. Chu","raw_affiliation_strings":["Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong"],"affiliations":[{"raw_affiliation_string":"Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong","institution_ids":["https://openalex.org/I177725633"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5061461560","display_name":"Defeng Wang","orcid":"https://orcid.org/0000-0002-3858-1790"},"institutions":[{"id":"https://openalex.org/I82880672","display_name":"Beihang University","ror":"https://ror.org/00wk2mp56","country_code":"CN","type":"funder","lineage":["https://openalex.org/I82880672"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Defeng Wang","raw_affiliation_strings":["Beijing Advanced Innovation Center for Big Data-Based Precision Medicine and the School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Beijing Advanced Innovation Center for Big Data-Based Precision Medicine and the School of Instrumentation Science and Opto-electronics Engineering, Beihang University, Beijing, China","institution_ids":["https://openalex.org/I82880672"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100602378","display_name":"Lin Shi","orcid":"https://orcid.org/0000-0003-2318-4669"},"institutions":[{"id":"https://openalex.org/I177725633","display_name":"Chinese University of Hong Kong","ror":"https://ror.org/00t33hh48","country_code":"HK","type":"funder","lineage":["https://openalex.org/I177725633"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Lin Shi","raw_affiliation_strings":["Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong"],"affiliations":[{"raw_affiliation_string":"Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong","institution_ids":["https://openalex.org/I177725633"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":19.192,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":198,"citation_normalized_percentile":{"value":0.999973,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":99,"max":100},"biblio":{"volume":"37","issue":"9","first_page":"2149","last_page":"2160"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10227","display_name":"Acute Ischemic Stroke Management","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/2713","display_name":"Epidemiology"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T10227","display_name":"Acute Ischemic Stroke Management","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/2713","display_name":"Epidemiology"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T14510","display_name":"Medical Imaging and Analysis","score":0.9934,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12702","display_name":"Brain Tumor Detection and Classification","score":0.9932,"subfield":{"id":"https://openalex.org/subfields/2808","display_name":"Neurology"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.66159797},{"id":"https://openalex.org/keywords/dice","display_name":"Dice","score":0.65113044},{"id":"https://openalex.org/keywords/margin","display_name":"Margin (machine learning)","score":0.6350005},{"id":"https://openalex.org/keywords/stroke","display_name":"Stroke","score":0.4787804},{"id":"https://openalex.org/keywords/data-set","display_name":"Data set","score":0.47754085},{"id":"https://openalex.org/keywords/s\u00f8rensen\u2013dice-coefficient","display_name":"S\u00f8rensen\u2013Dice coefficient","score":0.4716453},{"id":"https://openalex.org/keywords/fuse","display_name":"Fuse (electrical)","score":0.43007046},{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.41422763}],"concepts":[{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.7541841},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6914947},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.68503636},{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.66159797},{"id":"https://openalex.org/C22029948","wikidata":"https://www.wikidata.org/wiki/Q45089","display_name":"Dice","level":2,"score":0.65113044},{"id":"https://openalex.org/C774472","wikidata":"https://www.wikidata.org/wiki/Q6760393","display_name":"Margin (machine learning)","level":2,"score":0.6350005},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5225313},{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.51576877},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.5028712},{"id":"https://openalex.org/C2780645631","wikidata":"https://www.wikidata.org/wiki/Q671554","display_name":"Stroke (engine)","level":2,"score":0.4787804},{"id":"https://openalex.org/C58489278","wikidata":"https://www.wikidata.org/wiki/Q1172284","display_name":"Data set","level":2,"score":0.47754085},{"id":"https://openalex.org/C163892561","wikidata":"https://www.wikidata.org/wiki/Q2613728","display_name":"S\u00f8rensen\u2013Dice coefficient","level":4,"score":0.4716453},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.44363266},{"id":"https://openalex.org/C141353440","wikidata":"https://www.wikidata.org/wiki/Q182221","display_name":"Fuse (electrical)","level":2,"score":0.43007046},{"id":"https://openalex.org/C3020199598","wikidata":"https://www.wikidata.org/wiki/Q12202","display_name":"Ischemic stroke","level":3,"score":0.41682214},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.41422763},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.38554093},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.36013514},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.21584299},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.16049051},{"id":"https://openalex.org/C541997718","wikidata":"https://www.wikidata.org/wiki/Q188151","display_name":"Ischemia","level":2,"score":0.14687443},{"id":"https://openalex.org/C164705383","wikidata":"https://www.wikidata.org/wiki/Q10379","display_name":"Cardiology","level":1,"score":0.10935569},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.09493247},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.088792294},{"id":"https://openalex.org/C78519656","wikidata":"https://www.wikidata.org/wiki/Q101333","display_name":"Mechanical engineering","level":1,"score":0.0},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C119599485","wikidata":"https://www.wikidata.org/wiki/Q43035","display_name":"Electrical engineering","level":1,"score":0.0},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0}],"mesh":[{"descriptor_ui":"D002545","descriptor_name":"Brain Ischemia","qualifier_ui":"Q000000981","qualifier_name":"diagnostic imaging","is_major_topic":true},{"descriptor_ui":"D038524","descriptor_name":"Diffusion Magnetic Resonance Imaging","qualifier_ui":"Q000379","qualifier_name":"methods","is_major_topic":true},{"descriptor_ui":"D021621","descriptor_name":"Imaging, Three-Dimensional","qualifier_ui":"Q000379","qualifier_name":"methods","is_major_topic":true},{"descriptor_ui":"D016571","descriptor_name":"Neural Networks, Computer","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D020521","descriptor_name":"Stroke","qualifier_ui":"Q000000981","qualifier_name":"diagnostic imaging","is_major_topic":true},{"descriptor_ui":"D000368","descriptor_name":"Aged","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D000369","descriptor_name":"Aged, 80 and over","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D000465","descriptor_name":"Algorithms","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D001921","descriptor_name":"Brain","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D001921","descriptor_name":"Brain","qualifier_ui":"Q000000981","qualifier_name":"diagnostic imaging","is_major_topic":false},{"descriptor_ui":"D002545","descriptor_name":"Brain Ischemia","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D038524","descriptor_name":"Diffusion Magnetic Resonance Imaging","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D005260","descriptor_name":"Female","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D006801","descriptor_name":"Humans","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D021621","descriptor_name":"Imaging, Three-Dimensional","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D008297","descriptor_name":"Male","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D008875","descriptor_name":"Middle Aged","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D020521","descriptor_name":"Stroke","qualifier_ui":"","qualifier_name":null,"is_major_topic":false}],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tmi.2018.2821244","pdf_url":null,"source":{"id":"https://openalex.org/S58069681","display_name":"IEEE Transactions on Medical Imaging","issn_l":"0278-0062","issn":["0278-0062","1558-254X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/29994088","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.68,"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities"}],"grants":[{"funder":"https://openalex.org/F4320321592","funder_display_name":"Research Grants Council, University Grants Committee","award_id":"CUHK 14204117"},{"funder":"https://openalex.org/F4320321592","funder_display_name":"Research Grants Council, University Grants Committee","award_id":"CUHK 14113214"},{"funder":"https://openalex.org/F4320321920","funder_display_name":"Innovation and Technology Commission","award_id":"GHP-028-14SZ"},{"funder":"https://openalex.org/F4320321920","funder_display_name":"Innovation and Technology Commission","award_id":"GHP-025-17SZ"}],"datasets":[],"versions":[],"referenced_works_count":40,"referenced_works":["https://openalex.org/W1510376146","https://openalex.org/W1533861849","https://openalex.org/W1536680647","https://openalex.org/W1665214252","https://openalex.org/W1677182931","https://openalex.org/W1686810756","https://openalex.org/W1836465849","https://openalex.org/W1992638640","https://openalex.org/W1994161777","https://openalex.org/W2017290750","https://openalex.org/W2108598243","https://openalex.org/W2114538955","https://openalex.org/W2138595885","https://openalex.org/W2141188903","https://openalex.org/W2141473882","https://openalex.org/W2168894214","https://openalex.org/W2172177100","https://openalex.org/W2194775991","https://openalex.org/W2196906371","https://openalex.org/W2253429366","https://openalex.org/W2301358467","https://openalex.org/W2302255633","https://openalex.org/W2323929895","https://openalex.org/W2335728318","https://openalex.org/W2343172899","https://openalex.org/W2395611524","https://openalex.org/W2408074187","https://openalex.org/W2412782625","https://openalex.org/W2464708700","https://openalex.org/W2484736472","https://openalex.org/W2589644515","https://openalex.org/W2604790786","https://openalex.org/W2608353599","https://openalex.org/W2626711511","https://openalex.org/W2749212728","https://openalex.org/W2950899620","https://openalex.org/W2962914239","https://openalex.org/W2963446712","https://openalex.org/W2963606038","https://openalex.org/W3118608800"],"related_works":["https://openalex.org/W4402926319","https://openalex.org/W4391935352","https://openalex.org/W4389060404","https://openalex.org/W4286233748","https://openalex.org/W4254054209","https://openalex.org/W4200334192","https://openalex.org/W3104750253","https://openalex.org/W3012828488","https://openalex.org/W2973136608","https://openalex.org/W2952835238"],"abstract_inverted_index":{"Acute":[0],"ischemic":[1,27,77,179],"stroke":[2,59,78,180],"is":[3,240],"recognized":[4],"as":[5],"a":[6,46,70,214,245],"common":[7],"cerebral":[8],"vascular":[9],"disease":[10],"in":[11,49,105,155,248],"aging":[12],"people.":[13],"Accurate":[14],"diagnosis":[15,51],"and":[16,29,41,56,63,99,108,135,170,202,226,242],"timely":[17],"treatment":[18],"can":[19,93],"effectively":[20],"improve":[21],"the":[22,26,31,39,50,113,130,138,150,208,220],"blood":[23],"supply":[24],"of":[25,33,43,58,115,133,177],"area":[28],"reduce":[30],"risk":[32],"disability":[34],"or":[35],"even":[36],"death.":[37],"Understanding":[38],"location":[40],"size":[42],"infarcts":[44],"plays":[45],"critical":[47],"role":[48],"decision.":[52],"However,":[53],"manual":[54],"localization":[55],"quantification":[57],"lesions":[60],"are":[61],"laborious":[62],"time-consuming.":[64],"In":[65],"this":[66],"paper,":[67],"we":[68,121],"propose":[69],"novel":[71],"automatic":[72],"method":[73,92,239],"to":[74,128,148,183],"segment":[75],"acute":[76,178],"from":[79],"diffusion":[80],"weighted":[81],"images":[82],"(DWIs)":[83],"using":[84],"deep":[85,118],"3-D":[86,96,119],"convolutional":[87],"neural":[88],"networks":[89],"(CNNs).":[90],"Our":[91,187],"efficiently":[94],"utilize":[95],"contextual":[97],"information":[98,134],"automatically":[100],"learn":[101],"very":[102,117,228],"discriminative":[103],"features":[104],"an":[106],"end-to-end":[107],"data-driven":[109],"way.":[110],"To":[111],"relieve":[112],"difficulty":[114],"training":[116],"CNN,":[120],"equip":[122],"our":[123,142,185],"network":[124],"with":[125,144,174],"dense":[126],"connectivity":[127],"enable":[129],"unimpeded":[131],"propagation":[132],"gradients":[136],"throughout":[137],"network.":[139],"We":[140,217],"train":[141],"model":[143,188,221],"Dice":[145],"objective":[146],"function":[147],"combat":[149],"severe":[151],"class":[152],"imbalance":[153],"problem":[154],"data.":[156],"A":[157],"DWI":[158],"data":[159,224],"set":[160,225],"containing":[161],"242":[162],"subjects":[163],"(90":[164],"for":[165,168,172],"training,":[166],"62":[167],"validation,":[169],"90":[171],"testing)":[173],"various":[175,193],"types":[176],"was":[181],"constructed":[182],"evaluate":[184],"method.":[186],"achieved":[189,227],"high":[190],"performance":[191],"on":[192,222],"metrics":[194],"(Dice":[195],"similarity":[196],"coefficient:":[197],"79.13%,":[198],"lesionwise":[199,203],"precision:":[200],"92.67%,":[201],"F1":[204],"score:":[205],"89.25%),":[206],"outperforming":[207],"other":[209],"state-of-the-art":[210],"CNN":[211],"methods":[212],"by":[213],"large":[215],"margin.":[216],"also":[218],"evaluated":[219],"ISLES2015-SSIS":[223],"competitive":[229],"performance,":[230],"which":[231],"further":[232],"demonstrated":[233],"its":[234],"generalization":[235],"capacity.":[236],"The":[237],"proposed":[238],"fast":[241],"accurate,":[243],"demonstrating":[244],"good":[246],"potential":[247],"clinical":[249],"routines.":[250]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2795142235","counts_by_year":[{"year":2025,"cited_by_count":6},{"year":2024,"cited_by_count":27},{"year":2023,"cited_by_count":25},{"year":2022,"cited_by_count":34},{"year":2021,"cited_by_count":42},{"year":2020,"cited_by_count":33},{"year":2019,"cited_by_count":25},{"year":2018,"cited_by_count":6}],"updated_date":"2025-04-30T05:33:20.234256","created_date":"2018-04-06"}