{"id":"https://openalex.org/W1917465580","doi":"https://doi.org/10.1109/tmi.2015.2434398","title":"Polyp Detection via Imbalanced Learning and Discriminative Feature Learning","display_name":"Polyp Detection via Imbalanced Learning and Discriminative Feature Learning","publication_year":2015,"publication_date":"2015-05-18","ids":{"openalex":"https://openalex.org/W1917465580","doi":"https://doi.org/10.1109/tmi.2015.2434398","mag":"1917465580","pmid":"https://pubmed.ncbi.nlm.nih.gov/26011864"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tmi.2015.2434398","pdf_url":null,"source":{"id":"https://openalex.org/S58069681","display_name":"IEEE Transactions on Medical Imaging","issn_l":"0278-0062","issn":["0278-0062","1558-254X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5047307217","display_name":"Seung\u2010Hwan Bae","orcid":"https://orcid.org/0000-0002-9478-2706"},"institutions":[{"id":"https://openalex.org/I39534123","display_name":"Gwangju Institute of Science and Technology","ror":"https://ror.org/024kbgz78","country_code":"KR","type":"funder","lineage":["https://openalex.org/I39534123"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Seung-Hwan Bae","raw_affiliation_strings":["[School of Information and Communications, Gwangju Institute of Science and Technology, Buk-Gu, Gwangju, South Korea]"],"affiliations":[{"raw_affiliation_string":"[School of Information and Communications, Gwangju Institute of Science and Technology, Buk-Gu, Gwangju, South Korea]","institution_ids":["https://openalex.org/I39534123"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5113931494","display_name":"Kuk\u2010Jin Yoon","orcid":null},"institutions":[{"id":"https://openalex.org/I39534123","display_name":"Gwangju Institute of Science and Technology","ror":"https://ror.org/024kbgz78","country_code":"KR","type":"funder","lineage":["https://openalex.org/I39534123"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Kuk-Jin Yoon","raw_affiliation_strings":["[School of Information and Communications, Gwangju Institute of Science and Technology, Buk-Gu, Gwangju, South Korea]"],"affiliations":[{"raw_affiliation_string":"[School of Information and Communications, Gwangju Institute of Science and Technology, Buk-Gu, Gwangju, South Korea]","institution_ids":["https://openalex.org/I39534123"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":5.794,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":104,"citation_normalized_percentile":{"value":0.99994,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":98,"max":99},"biblio":{"volume":"34","issue":"11","first_page":"2379","last_page":"2393"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10601","display_name":"Handwritten Text Recognition Techniques","score":0.9773,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10601","display_name":"Handwritten Text Recognition Techniques","score":0.9773,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12707","display_name":"Vehicle License Plate Recognition","score":0.9764,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12357","display_name":"Digital Media Forensic Detection","score":0.9685,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/discriminative-model","display_name":"Discriminative model","score":0.8243019},{"id":"https://openalex.org/keywords/boosting","display_name":"Boosting","score":0.81174994},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.5714929},{"id":"https://openalex.org/keywords/feature-learning","display_name":"Feature Learning","score":0.42067164}],"concepts":[{"id":"https://openalex.org/C97931131","wikidata":"https://www.wikidata.org/wiki/Q5282087","display_name":"Discriminative model","level":2,"score":0.8243019},{"id":"https://openalex.org/C46686674","wikidata":"https://www.wikidata.org/wiki/Q466303","display_name":"Boosting (machine learning)","level":2,"score":0.81174994},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.8025909},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.681396},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.67240626},{"id":"https://openalex.org/C94915269","wikidata":"https://www.wikidata.org/wiki/Q1834857","display_name":"Detector","level":2,"score":0.6008532},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.5714929},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5438034},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.45716843},{"id":"https://openalex.org/C59404180","wikidata":"https://www.wikidata.org/wiki/Q17013334","display_name":"Feature learning","level":2,"score":0.42067164},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0}],"mesh":[{"descriptor_ui":"D003111","descriptor_name":"Colonic Polyps","qualifier_ui":"Q000175","qualifier_name":"diagnosis","is_major_topic":true},{"descriptor_ui":"D003113","descriptor_name":"Colonoscopy","qualifier_ui":"Q000379","qualifier_name":"methods","is_major_topic":true},{"descriptor_ui":"D007090","descriptor_name":"Image Interpretation, Computer-Assisted","qualifier_ui":"Q000379","qualifier_name":"methods","is_major_topic":true},{"descriptor_ui":"D000069550","descriptor_name":"Machine Learning","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D000465","descriptor_name":"Algorithms","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D003106","descriptor_name":"Colon","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D003106","descriptor_name":"Colon","qualifier_ui":"Q000473","qualifier_name":"pathology","is_major_topic":false},{"descriptor_ui":"D003111","descriptor_name":"Colonic Polyps","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D003111","descriptor_name":"Colonic Polyps","qualifier_ui":"Q000473","qualifier_name":"pathology","is_major_topic":false},{"descriptor_ui":"D003113","descriptor_name":"Colonoscopy","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D006801","descriptor_name":"Humans","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D007090","descriptor_name":"Image Interpretation, Computer-Assisted","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D016018","descriptor_name":"Least-Squares Analysis","qualifier_ui":"","qualifier_name":null,"is_major_topic":false}],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tmi.2015.2434398","pdf_url":null,"source":{"id":"https://openalex.org/S58069681","display_name":"IEEE Transactions on Medical Imaging","issn_l":"0278-0062","issn":["0278-0062","1558-254X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/26011864","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Reduced inequalities","score":0.77,"id":"https://metadata.un.org/sdg/10"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":41,"referenced_works":["https://openalex.org/W1509260277","https://openalex.org/W1567577094","https://openalex.org/W1580049798","https://openalex.org/W1990378711","https://openalex.org/W1999788504","https://openalex.org/W2034269173","https://openalex.org/W2040010062","https://openalex.org/W2066941820","https://openalex.org/W2099454382","https://openalex.org/W2099619800","https://openalex.org/W2103614420","https://openalex.org/W2106904071","https://openalex.org/W2107742354","https://openalex.org/W2107775979","https://openalex.org/W2120396754","https://openalex.org/W2120841116","https://openalex.org/W2133199783","https://openalex.org/W2137225583","https://openalex.org/W2139269942","https://openalex.org/W2139986471","https://openalex.org/W2140753590","https://openalex.org/W2148143831","https://openalex.org/W2149077040","https://openalex.org/W2153062878","https://openalex.org/W2154740476","https://openalex.org/W2155806188","https://openalex.org/W2156967881","https://openalex.org/W2161969291","https://openalex.org/W2163352848","https://openalex.org/W2164583936","https://openalex.org/W2167597393","https://openalex.org/W2167601730","https://openalex.org/W2167917621","https://openalex.org/W2168356304","https://openalex.org/W2534262995","https://openalex.org/W2544836728","https://openalex.org/W2548197316","https://openalex.org/W2979832949","https://openalex.org/W3097096317","https://openalex.org/W4239510810","https://openalex.org/W85350352"],"related_works":["https://openalex.org/W4389116644","https://openalex.org/W4388405611","https://openalex.org/W4309346246","https://openalex.org/W3208297503","https://openalex.org/W3119773509","https://openalex.org/W2965546495","https://openalex.org/W2964117661","https://openalex.org/W2889153461","https://openalex.org/W2619127353","https://openalex.org/W2116862786"],"abstract_inverted_index":{"Recent":[0],"achievement":[1],"of":[2,38,61,69,183],"the":[3,8,36,50,59,104,117,184],"learning-based":[4],"classification":[5],"leads":[6],"to":[7,35,55,97],"noticeable":[9],"performance":[10,172],"improvement":[11,173],"in":[12,79],"automatic":[13],"polyp":[14,39,51,70,101,126],"detection.":[15],"Here,":[16],"building":[17],"large":[18],"good":[19],"datasets":[20,52,77,118,169],"is":[21,31,64],"very":[22],"crucial":[23],"for":[24,133,159],"learning":[25,73,109,149,160],"a":[26,80,84,92,125],"reliable":[27],"detector.":[28],"However,":[29],"it":[30,158],"practically":[32],"challenging":[33,168],"due":[34],"diversity":[37],"types,":[40],"expensive":[41],"inspection,":[42],"and":[43,72,123,138,156,162,181],"labor-intensive":[44],"labeling":[45],"tasks.":[46],"For":[47],"this":[48,88],"reason,":[49],"usually":[53],"tend":[54],"be":[56],"imbalanced,":[57],"i.e.,":[58],"number":[60],"non-polyp":[62,85],"samples":[63],"much":[65],"larger":[66],"than":[67],"that":[68,140],"samples,":[71],"with":[74,116,187],"those":[75],"imbalanced":[76,105],"results":[78,166],"detector":[81,102,127],"biased":[82],"toward":[83],"class.":[86],"In":[87,107,131],"paper,":[89],"we":[90,111,144],"propose":[91,145],"data":[93],"sampling-based":[94],"boosting":[95],"framework":[96],"learn":[98,112],"an":[99,146],"unbiased":[100],"from":[103],"datasets.":[106],"our":[108],"scheme,":[110],"multiple":[113],"weak":[114],"classifiers":[115],"rebalanced":[119],"by":[120,128],"up/down":[121],"sampling,":[122],"generate":[124],"combining":[129],"them.":[130],"addition,":[132],"enhancing":[134],"discriminability":[135],"between":[136],"polyps":[137],"non-polyps":[139],"have":[141],"similar":[142],"appearances,":[143],"effective":[147],"feature":[148],"method":[150],"using":[151,167],"partial":[152],"least":[153],"square":[154],"analysis,":[155],"use":[157],"compact":[161],"discriminative":[163],"features.":[164],"Experimental":[165],"show":[170],"obvious":[171],"over":[174],"other":[175],"detectors.":[176],"We":[177],"further":[178],"prove":[179],"effectiveness":[180],"usefulness":[182],"proposed":[185],"methods":[186],"extensive":[188],"evaluation.":[189]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1917465580","counts_by_year":[{"year":2025,"cited_by_count":2},{"year":2024,"cited_by_count":4},{"year":2023,"cited_by_count":4},{"year":2022,"cited_by_count":16},{"year":2021,"cited_by_count":12},{"year":2020,"cited_by_count":20},{"year":2019,"cited_by_count":19},{"year":2018,"cited_by_count":13},{"year":2017,"cited_by_count":7},{"year":2016,"cited_by_count":6},{"year":2015,"cited_by_count":1}],"updated_date":"2025-04-20T07:34:04.726328","created_date":"2016-06-24"}