{"id":"https://openalex.org/W2025118363","doi":"https://doi.org/10.1109/tmi.2014.2352791","title":"Bayesian Blind Separation and Deconvolution of Dynamic Image Sequences Using Sparsity Priors","display_name":"Bayesian Blind Separation and Deconvolution of Dynamic Image Sequences Using Sparsity Priors","publication_year":2014,"publication_date":"2014-08-28","ids":{"openalex":"https://openalex.org/W2025118363","doi":"https://doi.org/10.1109/tmi.2014.2352791","mag":"2025118363","pmid":"https://pubmed.ncbi.nlm.nih.gov/25181364"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tmi.2014.2352791","pdf_url":null,"source":{"id":"https://openalex.org/S58069681","display_name":"IEEE Transactions on Medical Imaging","issn_l":"0278-0062","issn":["0278-0062","1558-254X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5057699271","display_name":"Ond\u0159ej Tich\u00fd","orcid":"https://orcid.org/0000-0003-3625-3926"},"institutions":[{"id":"https://openalex.org/I4210119419","display_name":"Czech Academy of Sciences, Institute of Information Theory and Automation","ror":"https://ror.org/03h1hsz49","country_code":"CZ","type":"facility","lineage":["https://openalex.org/I202391551","https://openalex.org/I4210119419"]}],"countries":["CZ"],"is_corresponding":false,"raw_author_name":"Ondrej Tichy","raw_affiliation_strings":["Institute of Information Theory and Automation, Prague, Czech Republic"],"affiliations":[{"raw_affiliation_string":"Institute of Information Theory and Automation, Prague, Czech Republic","institution_ids":["https://openalex.org/I4210119419"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5037930366","display_name":"V\u00e1clav \u0160m\u00eddl","orcid":"https://orcid.org/0000-0003-3027-6174"},"institutions":[{"id":"https://openalex.org/I4210119419","display_name":"Czech Academy of Sciences, Institute of Information Theory and Automation","ror":"https://ror.org/03h1hsz49","country_code":"CZ","type":"facility","lineage":["https://openalex.org/I202391551","https://openalex.org/I4210119419"]}],"countries":["CZ"],"is_corresponding":false,"raw_author_name":"Vaclav Smidl","raw_affiliation_strings":["Institute of Information Theory and Automation, Prague, Czech Republic"],"affiliations":[{"raw_affiliation_string":"Institute of Information Theory and Automation, Prague, Czech Republic","institution_ids":["https://openalex.org/I4210119419"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":3.342,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":27,"citation_normalized_percentile":{"value":0.927783,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":92,"max":93},"biblio":{"volume":"34","issue":"1","first_page":"258","last_page":"266"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation Techniques","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation Techniques","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10640","display_name":"Spectroscopy and Chemometric Analyses","score":0.996,"subfield":{"id":"https://openalex.org/subfields/1602","display_name":"Analytical Chemistry"},"field":{"id":"https://openalex.org/fields/16","display_name":"Chemistry"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9755,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/convolution","display_name":"Convolution (computer science)","score":0.4976869},{"id":"https://openalex.org/keywords/underdetermined-system","display_name":"Underdetermined system","score":0.44982734},{"id":"https://openalex.org/keywords/source-separation","display_name":"Source Separation","score":0.41937417}],"concepts":[{"id":"https://openalex.org/C120317606","wikidata":"https://www.wikidata.org/wiki/Q17105967","display_name":"Blind signal separation","level":3,"score":0.6749071},{"id":"https://openalex.org/C177769412","wikidata":"https://www.wikidata.org/wiki/Q278090","display_name":"Prior probability","level":3,"score":0.63178957},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5981231},{"id":"https://openalex.org/C174576160","wikidata":"https://www.wikidata.org/wiki/Q1183700","display_name":"Deconvolution","level":2,"score":0.53955024},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.538664},{"id":"https://openalex.org/C9810830","wikidata":"https://www.wikidata.org/wiki/Q635384","display_name":"Maximum a posteriori estimation","level":3,"score":0.5046023},{"id":"https://openalex.org/C45347329","wikidata":"https://www.wikidata.org/wiki/Q5166604","display_name":"Convolution (computer science)","level":3,"score":0.4976869},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.46590716},{"id":"https://openalex.org/C179690561","wikidata":"https://www.wikidata.org/wiki/Q4316110","display_name":"Underdetermined system","level":2,"score":0.44982734},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.44779608},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.4222666},{"id":"https://openalex.org/C2776864781","wikidata":"https://www.wikidata.org/wiki/Q52617913","display_name":"Source separation","level":2,"score":0.41937417},{"id":"https://openalex.org/C30044814","wikidata":"https://www.wikidata.org/wiki/Q11334452","display_name":"Blind deconvolution","level":3,"score":0.4183483},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.32808864},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.1530079},{"id":"https://openalex.org/C127162648","wikidata":"https://www.wikidata.org/wiki/Q16858953","display_name":"Channel (broadcasting)","level":2,"score":0.10755223},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.09943339},{"id":"https://openalex.org/C49781872","wikidata":"https://www.wikidata.org/wiki/Q1045555","display_name":"Maximum likelihood","level":2,"score":0.0},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.0}],"mesh":[{"descriptor_ui":"D001499","descriptor_name":"Bayes Theorem","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D007090","descriptor_name":"Image Interpretation, Computer-Assisted","qualifier_ui":"Q000379","qualifier_name":"methods","is_major_topic":true},{"descriptor_ui":"D000328","descriptor_name":"Adult","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D000465","descriptor_name":"Algorithms","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D006801","descriptor_name":"Humans","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D007090","descriptor_name":"Image Interpretation, Computer-Assisted","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D007668","descriptor_name":"Kidney","qualifier_ui":"Q000378","qualifier_name":"metabolism","is_major_topic":false},{"descriptor_ui":"D007668","descriptor_name":"Kidney","qualifier_ui":"Q000737","qualifier_name":"chemistry","is_major_topic":false},{"descriptor_ui":"D007668","descriptor_name":"Kidney","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D015233","descriptor_name":"Models, Statistical","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D013997","descriptor_name":"Time Factors","qualifier_ui":"","qualifier_name":null,"is_major_topic":false}],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tmi.2014.2352791","pdf_url":null,"source":{"id":"https://openalex.org/S58069681","display_name":"IEEE Transactions on Medical Imaging","issn_l":"0278-0062","issn":["0278-0062","1558-254X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/25181364","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":33,"referenced_works":["https://openalex.org/W1567512734","https://openalex.org/W1648445109","https://openalex.org/W1863479506","https://openalex.org/W1986152122","https://openalex.org/W1999371246","https://openalex.org/W2018431410","https://openalex.org/W2018529848","https://openalex.org/W2035569183","https://openalex.org/W2044356686","https://openalex.org/W2060843042","https://openalex.org/W2082776943","https://openalex.org/W2084081987","https://openalex.org/W2084555956","https://openalex.org/W2092078486","https://openalex.org/W2099084584","https://openalex.org/W2099741732","https://openalex.org/W2107710506","https://openalex.org/W2109717317","https://openalex.org/W2110042253","https://openalex.org/W2114345663","https://openalex.org/W2118381521","https://openalex.org/W2125118959","https://openalex.org/W2125392257","https://openalex.org/W2127852024","https://openalex.org/W2129318972","https://openalex.org/W2146718183","https://openalex.org/W2148325823","https://openalex.org/W2167026993","https://openalex.org/W2265897154","https://openalex.org/W2313957960","https://openalex.org/W4235388971","https://openalex.org/W4285719527","https://openalex.org/W575122527"],"related_works":["https://openalex.org/W2900617041","https://openalex.org/W2383973401","https://openalex.org/W2375962929","https://openalex.org/W2351680970","https://openalex.org/W2206857820","https://openalex.org/W2113403277","https://openalex.org/W2095924515","https://openalex.org/W2034312940","https://openalex.org/W2030887432","https://openalex.org/W1598723711"],"abstract_inverted_index":{"A":[0],"common":[1],"problem":[2,37,70],"of":[3,12,21,27,52,62,103,113,167,174,179,194,207,209,222],"imaging":[4],"3-D":[5],"objects":[6],"into":[7],"image":[8,105],"plane":[9],"is":[10,67,225],"superposition":[11],"the":[13,60,79,88,143,165,189,200,213,223],"projected":[14],"structures.":[15],"In":[16],"dynamic":[17,42,56,104,175],"imaging,":[18],"projection":[19],"overlaps":[20],"organs":[22],"and":[23,117,140,158,184,203,212],"tissues":[24],"complicate":[25],"extraction":[26],"signals":[28,53],"specific":[29,54,120],"to":[30,55,59,154,171],"individual":[31],"structures":[32,57],"with":[33,71,137,182],"different":[34],"dynamics.":[35],"The":[36,147],"manifests":[38],"itself":[39],"also":[40],"in":[41,49],"tomography":[43],"as":[44,111,133],"tissue":[45,180],"mixtures":[46],"are":[47,131,169],"present":[48],"voxels.":[50],"Separation":[51],"belongs":[58],"category":[61],"blind":[63,95],"source":[64,89,96,109,119,156],"separation.":[65],"It":[66],"an":[68,114,217],"underdetermined":[69],"many":[72],"possible":[73],"solutions.":[74],"Existing":[75],"separation":[76,97,168,181],"methods":[77,197],"select":[78],"solution":[80],"that":[81,164],"best":[82],"matches":[83],"their":[84],"additional":[85],"assumptions":[86,130],"on":[87,100],"model.":[90],"We":[91,162],"propose":[92],"a":[93,118,134],"novel":[94],"method":[98,191],"based":[99],"probabilistic":[101],"model":[102,136],"sequences":[106],"assuming":[107],"each":[108],"dynamics":[110],"convolution":[112,160],"input":[115],"function":[116],"kernel":[121],"(modeling":[122],"organ":[123],"impulse":[124],"response":[125],"or":[126],"retention":[127],"function).":[128],"These":[129],"formalized":[132],"Bayesian":[135],"hierarchical":[138],"prior":[139,149],"solved":[141],"by":[142,188,199,216],"Variational":[144],"Bayes":[145],"method.":[146],"proposed":[148,190],"distribution":[150],"assigns":[151],"higher":[152],"probability":[153],"sparse":[155,159],"images":[157],"kernels.":[161],"show":[163],"results":[166],"relevant":[170],"selected":[172],"tasks":[173],"renal":[176],"scintigraphy.":[177],"Accuracy":[178],"simulated":[183,210],"clinical":[185],"data":[186],"provided":[187],"outperformed":[192],"accuracy":[193],"previously":[195],"developed":[196],"measured":[198],"mean":[201,204],"square":[202],"absolute":[205],"errors":[206],"estimation":[208],"sources":[211,214],"separated":[215],"expert":[218],"physician.":[219],"MATLAB":[220],"implementation":[221],"algorithm":[224],"available":[226],"for":[227],"download.":[228]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2025118363","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":3},{"year":2021,"cited_by_count":2},{"year":2020,"cited_by_count":2},{"year":2019,"cited_by_count":4},{"year":2018,"cited_by_count":2},{"year":2017,"cited_by_count":4},{"year":2016,"cited_by_count":5},{"year":2015,"cited_by_count":3},{"year":2014,"cited_by_count":1}],"updated_date":"2025-04-19T11:31:05.956615","created_date":"2016-06-24"}