{"id":"https://openalex.org/W2169319350","doi":"https://doi.org/10.1109/tmi.2010.2052466","title":"Information-Theoretic Approach for Analyzing Bias and Variance in Lung Nodule Size Estimation With CT: A Phantom Study","display_name":"Information-Theoretic Approach for Analyzing Bias and Variance in Lung Nodule Size Estimation With CT: A Phantom Study","publication_year":2010,"publication_date":"2010-06-23","ids":{"openalex":"https://openalex.org/W2169319350","doi":"https://doi.org/10.1109/tmi.2010.2052466","mag":"2169319350","pmid":"https://pubmed.ncbi.nlm.nih.gov/20562039"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tmi.2010.2052466","pdf_url":null,"source":{"id":"https://openalex.org/S58069681","display_name":"IEEE Transactions on Medical Imaging","issn_l":"0278-0062","issn":["0278-0062","1558-254X"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5039348485","display_name":"Marios A. Gavrielides","orcid":null},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Marios A. Gavrielides","raw_affiliation_strings":["DIAM/OSEL/CDRH/FDA, Silver Spring, MD, USA"],"affiliations":[{"raw_affiliation_string":"DIAM/OSEL/CDRH/FDA, Silver Spring, MD, USA","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5021406539","display_name":"Rongping Zeng","orcid":"https://orcid.org/0000-0003-1849-0637"},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Rongping Zeng","raw_affiliation_strings":["DIAM/OSEL/CDRH/FDA, Silver Spring, MD, USA"],"affiliations":[{"raw_affiliation_string":"DIAM/OSEL/CDRH/FDA, Silver Spring, MD, USA","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5073317686","display_name":"Lisa M. Kinnard","orcid":null},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Lisa M. Kinnard","raw_affiliation_strings":["DIAM/OSEL/CDRH/FDA, Silver Spring, MD, USA"],"affiliations":[{"raw_affiliation_string":"DIAM/OSEL/CDRH/FDA, Silver Spring, MD, USA","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5010335705","display_name":"Kyle J. Myers","orcid":"https://orcid.org/0000-0001-7394-4932"},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Kyle J. Myers","raw_affiliation_strings":["DIAM/OSEL/CDRH/FDA, Silver Spring, MD, USA"],"affiliations":[{"raw_affiliation_string":"DIAM/OSEL/CDRH/FDA, Silver Spring, MD, USA","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5006593300","display_name":"Nicholas Petrick","orcid":"https://orcid.org/0000-0001-5167-8899"},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Nicholas Petrick","raw_affiliation_strings":["DIAM/OSEL/CDRH/FDA, Silver Spring, MD, USA"],"affiliations":[{"raw_affiliation_string":"DIAM/OSEL/CDRH/FDA, Silver Spring, MD, USA","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.468,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":37,"citation_normalized_percentile":{"value":0.954073,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":"29","issue":"10","first_page":"1795","last_page":"1807"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10202","display_name":"Lung Cancer Diagnosis and Treatment","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2740","display_name":"Pulmonary and Respiratory Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T10202","display_name":"Lung Cancer Diagnosis and Treatment","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2740","display_name":"Pulmonary and Respiratory Medicine"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10522","display_name":"Medical Imaging Techniques and Applications","score":0.999,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.998,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/nodule","display_name":"Nodule (geology)","score":0.5433195},{"id":"https://openalex.org/keywords/reconstruction-filter","display_name":"Reconstruction filter","score":0.43392664}],"concepts":[{"id":"https://openalex.org/C104293457","wikidata":"https://www.wikidata.org/wiki/Q28324852","display_name":"Imaging phantom","level":2,"score":0.8264018},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5586694},{"id":"https://openalex.org/C141379421","wikidata":"https://www.wikidata.org/wiki/Q6094427","display_name":"Iterative reconstruction","level":2,"score":0.5445516},{"id":"https://openalex.org/C2776731575","wikidata":"https://www.wikidata.org/wiki/Q2916245","display_name":"Nodule (geology)","level":2,"score":0.5433195},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5403661},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.52305114},{"id":"https://openalex.org/C185429906","wikidata":"https://www.wikidata.org/wiki/Q1130160","display_name":"Estimator","level":2,"score":0.50759184},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.4426478},{"id":"https://openalex.org/C41578188","wikidata":"https://www.wikidata.org/wiki/Q2142395","display_name":"Reconstruction filter","level":5,"score":0.43392664},{"id":"https://openalex.org/C196083921","wikidata":"https://www.wikidata.org/wiki/Q7915758","display_name":"Variance (accounting)","level":2,"score":0.42925322},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.37448663},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.33164102},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.32717627},{"id":"https://openalex.org/C2989005","wikidata":"https://www.wikidata.org/wiki/Q214963","display_name":"Nuclear medicine","level":1,"score":0.16209224},{"id":"https://openalex.org/C44682112","wikidata":"https://www.wikidata.org/wiki/Q918242","display_name":"Low-pass filter","level":3,"score":0.13378078},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.09240866},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C121955636","wikidata":"https://www.wikidata.org/wiki/Q4116214","display_name":"Accounting","level":1,"score":0.0},{"id":"https://openalex.org/C76826599","wikidata":"https://www.wikidata.org/wiki/Q1248611","display_name":"Root-raised-cosine filter","level":4,"score":0.0},{"id":"https://openalex.org/C144133560","wikidata":"https://www.wikidata.org/wiki/Q4830453","display_name":"Business","level":0,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[{"descriptor_ui":"D000465","descriptor_name":"Algorithms","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D008175","descriptor_name":"Lung Neoplasms","qualifier_ui":"Q000000981","qualifier_name":"diagnostic imaging","is_major_topic":true},{"descriptor_ui":"D011857","descriptor_name":"Radiographic Image Interpretation, Computer-Assisted","qualifier_ui":"Q000379","qualifier_name":"methods","is_major_topic":true},{"descriptor_ui":"D003074","descriptor_name":"Solitary Pulmonary Nodule","qualifier_ui":"Q000000981","qualifier_name":"diagnostic imaging","is_major_topic":true},{"descriptor_ui":"D014057","descriptor_name":"Tomography, X-Ray Computed","qualifier_ui":"Q000379","qualifier_name":"methods","is_major_topic":true},{"descriptor_ui":"D000704","descriptor_name":"Analysis of Variance","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D006801","descriptor_name":"Humans","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D007257","descriptor_name":"Information Theory","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D008175","descriptor_name":"Lung Neoplasms","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D011856","descriptor_name":"Radiographic Image Enhancement","qualifier_ui":"Q000379","qualifier_name":"methods","is_major_topic":false},{"descriptor_ui":"D011856","descriptor_name":"Radiographic Image Enhancement","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D011857","descriptor_name":"Radiographic Image Interpretation, Computer-Assisted","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D015203","descriptor_name":"Reproducibility of Results","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D012680","descriptor_name":"Sensitivity and Specificity","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D003074","descriptor_name":"Solitary Pulmonary Nodule","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D014057","descriptor_name":"Tomography, X-Ray Computed","qualifier_ui":"","qualifier_name":null,"is_major_topic":false}],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tmi.2010.2052466","pdf_url":null,"source":{"id":"https://openalex.org/S58069681","display_name":"IEEE Transactions on Medical Imaging","issn_l":"0278-0062","issn":["0278-0062","1558-254X"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/20562039","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":42,"referenced_works":["https://openalex.org/W1556473642","https://openalex.org/W1976860159","https://openalex.org/W1978339728","https://openalex.org/W1984271953","https://openalex.org/W1990629315","https://openalex.org/W1990919544","https://openalex.org/W2004308418","https://openalex.org/W2012686402","https://openalex.org/W2014811081","https://openalex.org/W2015043700","https://openalex.org/W2018984493","https://openalex.org/W2027897250","https://openalex.org/W2035374697","https://openalex.org/W2037521346","https://openalex.org/W2037649841","https://openalex.org/W2039400714","https://openalex.org/W2041812800","https://openalex.org/W2058219878","https://openalex.org/W2066153944","https://openalex.org/W2076860189","https://openalex.org/W2081322940","https://openalex.org/W2081357229","https://openalex.org/W2095181243","https://openalex.org/W2105662848","https://openalex.org/W2109436873","https://openalex.org/W2109711012","https://openalex.org/W2111209861","https://openalex.org/W2114276475","https://openalex.org/W2116999286","https://openalex.org/W2118867739","https://openalex.org/W2127100498","https://openalex.org/W2128703497","https://openalex.org/W2129866184","https://openalex.org/W2129884298","https://openalex.org/W2140728937","https://openalex.org/W2151695813","https://openalex.org/W2153943779","https://openalex.org/W2156388816","https://openalex.org/W2161430726","https://openalex.org/W2162808854","https://openalex.org/W2165991930","https://openalex.org/W2166928534"],"related_works":["https://openalex.org/W4251128056","https://openalex.org/W4230755026","https://openalex.org/W2746366400","https://openalex.org/W2182921069","https://openalex.org/W2173022174","https://openalex.org/W2144914506","https://openalex.org/W2109135198","https://openalex.org/W2017052259","https://openalex.org/W1994910710","https://openalex.org/W1976244879"],"abstract_inverted_index":{"This":[0,108,171],"work":[1,172],"is":[2,33],"a":[3,27,29,61,101,131],"part":[4],"of":[5,20,40,69,82,113,125,128,133,151,179,181,186],"our":[6],"more":[7],"general":[8],"effort":[9],"to":[10,90,160,168,176,194,197],"probe":[11],"the":[12,16,37,70,97,111,114,121,126,138,148,184],"interrelated":[13],"factors":[14,41],"impacting":[15],"accuracy":[17],"and":[18,45,50,73,117,145,163,191],"precision":[19],"lung":[21,187],"nodule":[22,48,83,99,188],"measurement":[23],"tasks.":[24],"For":[25],"such":[26,42],"task":[28,185],"low-bias":[30],"size":[31,165,189],"estimator":[32],"needed":[34],"so":[35],"that":[36],"true":[38],"effect":[39,119],"as":[43],"acquisition":[44,72],"reconstruction":[46,74],"parameters,":[47],"characteristics":[49],"others":[51],"can":[52],"be":[53],"assessed.":[54],"Towards":[55],"this":[56],"goal,":[57],"we":[58],"have":[59],"developed":[60],"matched":[62,89,140],"filter":[63,141],"based":[64],"on":[65,120],"an":[66],"adaptive":[67],"model":[68,77],"object":[71,127],"process.":[75],"Our":[76],"derives":[78],"simulated":[79],"reconstructed":[80],"data":[81,93],"objects":[84],"(templates)":[85],"which":[86],"are":[87],"then":[88],"computed":[91],"tomography":[92],"produced":[94],"from":[95,158,166],"imaging":[96,106,115],"actual":[98],"in":[100,147,156,164,183],"phantom":[102],"study":[103],"using":[104],"corresponding":[105],"parameters.":[107],"approach":[109],"incorporates":[110],"properties":[112],"system":[116],"their":[118],"discrete":[122],"3-D":[123],"representation":[124],"interest.":[129],"Using":[130],"sum":[132],"absolute":[134],"differences":[135],"cost":[136],"function,":[137],"derived":[139],"demonstrated":[142],"low":[143],"bias":[144],"variance":[146],"volume":[149],"estimation":[150],"spherical":[152],"synthetic":[153],"nodules":[154],"ranging":[155],"density":[157],"-630":[159],"+100":[161],"HU":[162],"5":[167],"10":[169],"mm.":[170],"could":[173],"potentially":[174],"lead":[175,193],"better":[177],"understanding":[178],"sources":[180],"error":[182],"measurements":[190],"may":[192],"new":[195],"techniques":[196],"account":[198],"for":[199],"those":[200],"errors.":[201]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2169319350","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":1},{"year":2019,"cited_by_count":1},{"year":2018,"cited_by_count":5},{"year":2017,"cited_by_count":2},{"year":2016,"cited_by_count":5},{"year":2015,"cited_by_count":6},{"year":2014,"cited_by_count":4},{"year":2013,"cited_by_count":2},{"year":2012,"cited_by_count":4}],"updated_date":"2024-12-06T20:15:10.401445","created_date":"2016-06-24"}