{"id":"https://openalex.org/W2166312025","doi":"https://doi.org/10.1109/tmi.2010.2041358","title":"Automatic Parameter Selection for Multimodal Image Registration","display_name":"Automatic Parameter Selection for Multimodal Image Registration","publication_year":2010,"publication_date":"2010-03-16","ids":{"openalex":"https://openalex.org/W2166312025","doi":"https://doi.org/10.1109/tmi.2010.2041358","mag":"2166312025","pmid":"https://pubmed.ncbi.nlm.nih.gov/20236877"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tmi.2010.2041358","pdf_url":null,"source":{"id":"https://openalex.org/S58069681","display_name":"IEEE Transactions on Medical Imaging","issn_l":"0278-0062","issn":["0278-0062","1558-254X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5082628877","display_name":"Dieter Hahn","orcid":"https://orcid.org/0000-0001-7419-7246"},"institutions":[{"id":"https://openalex.org/I181369854","display_name":"Friedrich-Alexander-Universit\u00e4t Erlangen-N\u00fcrnberg","ror":"https://ror.org/00f7hpc57","country_code":"DE","type":"funder","lineage":["https://openalex.org/I181369854"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Dieter A Hahn","raw_affiliation_strings":["Department of Computer Science, Pattern Recognition Laboratory, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, Pattern Recognition Laboratory, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany","institution_ids":["https://openalex.org/I181369854"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5004072053","display_name":"Volker Daum","orcid":null},"institutions":[{"id":"https://openalex.org/I181369854","display_name":"Friedrich-Alexander-Universit\u00e4t Erlangen-N\u00fcrnberg","ror":"https://ror.org/00f7hpc57","country_code":"DE","type":"funder","lineage":["https://openalex.org/I181369854"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Volker Daum","raw_affiliation_strings":["Department of Computer Science, Pattern Recognition Laboratory, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, Pattern Recognition Laboratory, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany","institution_ids":["https://openalex.org/I181369854"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5058662444","display_name":"Joachim Hornegger","orcid":null},"institutions":[{"id":"https://openalex.org/I181369854","display_name":"Friedrich-Alexander-Universit\u00e4t Erlangen-N\u00fcrnberg","ror":"https://ror.org/00f7hpc57","country_code":"DE","type":"funder","lineage":["https://openalex.org/I181369854"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Joachim Hornegger","raw_affiliation_strings":["Department of Computer Science, Pattern Recognition Laboratory, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, Pattern Recognition Laboratory, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany","institution_ids":["https://openalex.org/I181369854"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":3.783,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":25,"citation_normalized_percentile":{"value":0.91378,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":90,"max":91},"biblio":{"volume":"29","issue":"5","first_page":"1140","last_page":"1155"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10522","display_name":"Medical Imaging Techniques and Applications","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/image-registration","display_name":"Image registration","score":0.6212351},{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.51747304},{"id":"https://openalex.org/keywords/kernel-density-estimation","display_name":"Kernel density estimation","score":0.5121584},{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.43991253}],"concepts":[{"id":"https://openalex.org/C53533937","wikidata":"https://www.wikidata.org/wiki/Q185020","display_name":"Histogram","level":3,"score":0.76653045},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6497835},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6334474},{"id":"https://openalex.org/C166704113","wikidata":"https://www.wikidata.org/wiki/Q861092","display_name":"Image registration","level":3,"score":0.6212351},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.51747304},{"id":"https://openalex.org/C71134354","wikidata":"https://www.wikidata.org/wiki/Q458825","display_name":"Kernel density estimation","level":3,"score":0.5121584},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5019877},{"id":"https://openalex.org/C183115368","wikidata":"https://www.wikidata.org/wiki/Q856577","display_name":"Weighting","level":2,"score":0.44668376},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.43991253},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.37868413},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.3404837},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.31996018},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.23150784},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C185429906","wikidata":"https://www.wikidata.org/wiki/Q1130160","display_name":"Estimator","level":2,"score":0.0},{"id":"https://openalex.org/C126838900","wikidata":"https://www.wikidata.org/wiki/Q77604","display_name":"Radiology","level":1,"score":0.0}],"mesh":[{"descriptor_ui":"D007090","descriptor_name":"Image Interpretation, Computer-Assisted","qualifier_ui":"Q000379","qualifier_name":"methods","is_major_topic":true},{"descriptor_ui":"D000465","descriptor_name":"Algorithms","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D000818","descriptor_name":"Animals","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D001185","descriptor_name":"Artificial Intelligence","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D003952","descriptor_name":"Diagnostic Imaging","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D003952","descriptor_name":"Diagnostic Imaging","qualifier_ui":"Q000379","qualifier_name":"methods","is_major_topic":false},{"descriptor_ui":"D007089","descriptor_name":"Image Enhancement","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D007089","descriptor_name":"Image Enhancement","qualifier_ui":"Q000379","qualifier_name":"methods","is_major_topic":false},{"descriptor_ui":"D007090","descriptor_name":"Image Interpretation, Computer-Assisted","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D021621","descriptor_name":"Imaging, Three-Dimensional","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D021621","descriptor_name":"Imaging, Three-Dimensional","qualifier_ui":"Q000379","qualifier_name":"methods","is_major_topic":false},{"descriptor_ui":"D010363","descriptor_name":"Pattern Recognition, Automated","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D010363","descriptor_name":"Pattern Recognition, Automated","qualifier_ui":"Q000379","qualifier_name":"methods","is_major_topic":false},{"descriptor_ui":"D013382","descriptor_name":"Subtraction Technique","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D014057","descriptor_name":"Tomography, X-Ray Computed","qualifier_ui":"","qualifier_name":null,"is_major_topic":false}],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tmi.2010.2041358","pdf_url":null,"source":{"id":"https://openalex.org/S58069681","display_name":"IEEE Transactions on Medical Imaging","issn_l":"0278-0062","issn":["0278-0062","1558-254X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/20236877","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":40,"referenced_works":["https://openalex.org/W1480376833","https://openalex.org/W1492621082","https://openalex.org/W1518961746","https://openalex.org/W1536719366","https://openalex.org/W1554663460","https://openalex.org/W186037414","https://openalex.org/W1870947790","https://openalex.org/W1987246402","https://openalex.org/W1991668702","https://openalex.org/W1995875735","https://openalex.org/W2004537679","https://openalex.org/W2005085251","https://openalex.org/W2016576171","https://openalex.org/W2034432063","https://openalex.org/W2039664503","https://openalex.org/W2044321097","https://openalex.org/W2048551443","https://openalex.org/W2050921210","https://openalex.org/W2073431334","https://openalex.org/W2090532648","https://openalex.org/W2094382091","https://openalex.org/W2105456967","https://openalex.org/W2107105182","https://openalex.org/W2109808436","https://openalex.org/W2118020555","https://openalex.org/W2122313934","https://openalex.org/W2131938193","https://openalex.org/W2134165173","https://openalex.org/W2140935196","https://openalex.org/W2141104431","https://openalex.org/W2150593711","https://openalex.org/W2165084023","https://openalex.org/W2165131537","https://openalex.org/W2170587357","https://openalex.org/W2170998104","https://openalex.org/W2173710661","https://openalex.org/W2316478175","https://openalex.org/W4205687621","https://openalex.org/W4242238821","https://openalex.org/W66834283"],"related_works":["https://openalex.org/W3163375306","https://openalex.org/W2511137960","https://openalex.org/W2377575454","https://openalex.org/W2139960062","https://openalex.org/W2137654917","https://openalex.org/W2060018053","https://openalex.org/W2016701876","https://openalex.org/W1986586280","https://openalex.org/W1892011953","https://openalex.org/W1498259939"],"abstract_inverted_index":{"Over":[0],"the":[1,38,93,104,110,122,126,158,166,181,195,207,215,237,245,248,273],"past":[2],"ten":[3],"years":[4],"similarity":[5,111],"measures":[6],"based":[7,143],"on":[8,109,144,236],"intensity":[9],"distributions":[10],"have":[11,133],"become":[12],"state-of-the-art":[13,138],"in":[14,113,180,222,251],"automatic":[15,123],"multimodal":[16],"image":[17,155],"registration.":[18],"An":[19],"implementation":[20,81,172,239],"for":[21,37,66,78,121,206,272,279,290],"clinical":[22],"usage":[23],"has":[24,232],"to":[25,102,150,169,184,269],"support":[26],"a":[27,32,72,79,97,119,137,170,185,189,280,286],"plurality":[28],"of":[29,42,74,86,106,125,128,157,165,197,209,214,230,253],"images.":[30,294],"However,":[31],"generally":[33],"applicable":[34],"parameter":[35,216],"configuration":[36],"number":[39,127,208,229],"and":[40,89,118,148,153,183,203,247,256,276],"sizes":[41],"histogram":[43,129,199,210],"bins,":[44],"optimal":[45],"Parzen-window":[46],"kernel":[47],"widths":[48],"or":[49],"background":[50,107],"thresholds":[51,205],"cannot":[52],"be":[53,178],"found.":[54],"This":[55,69],"explains":[56],"why":[57],"various":[58,198],"research":[59],"groups":[60],"present":[61,92],"partly":[62],"contradictory":[63],"empirical":[64],"proposals":[65],"these":[67],"parameters.":[68],"paper":[70],"proposes":[71],"set":[73],"data-driven":[75],"estimation":[76,124],"schemes":[77],"parameter-free":[80],"that":[82,141,240],"eliminates":[83],"major":[84],"caveats":[85],"heuristic":[87],"trial":[88],"error.":[90],"We":[91,162],"following":[94],"novel":[95],"approaches:":[96],"new":[98],"coincidence":[99],"weighting":[100],"scheme":[101],"reduce":[103],"influence":[105,235],"noise":[108],"measure":[112],"combination":[114],"with":[115,224],"Max-Lloyd":[116],"requantization,":[117],"tradeoff":[120],"bins.":[130,211],"These":[131],"methods":[132],"been":[134],"integrated":[135],"into":[136],"rigid":[139],"registration":[140,187,258,275],"is":[142,265],"normalized":[145],"mutual":[146],"information":[147],"applied":[149],"CT-MR,":[151],"PET-MR,":[152],"MR-MR":[154],"pairs":[156],"RIRE":[159],"2.0":[160],"database.":[161],"compare":[163],"combinations":[164],"proposed":[167,238],"techniques":[168,218],"standard":[171,249,281],"using":[173],"default":[174],"parameters,":[175],"which":[176],"can":[177],"found":[179],"literature,":[182],"manual":[186,246,274],"by":[188],"medical":[190],"expert.":[191],"Additionally,":[192],"we":[193],"analyze":[194],"effects":[196],"sizes,":[200],"sampling":[201],"rates,":[202],"error":[204,259],"The":[212,228,261],"comparison":[213],"selection":[217],"yields":[219],"25":[220],"approaches":[221],"total,":[223],"114":[225],"registrations":[226],"each.":[227],"bins":[231],"no":[233],"significant":[234,287],"performs":[241],"better":[242],"than":[243],"both":[244],"method":[250],"terms":[252],"acceptance":[254],"rates":[255],"target":[257],"(TRE).":[260],"overall":[262],"mean":[263],"TRE":[264,288],"2.34":[266],"mm":[267,271,278],"compared":[268],"2.54":[270],"6.48":[277],"implementation.":[282],"Our":[283],"results":[284],"show":[285],"reduction":[289],"distortion-corrected":[291],"magnetic":[292],"resonance":[293]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2166312025","counts_by_year":[{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":2},{"year":2019,"cited_by_count":1},{"year":2018,"cited_by_count":2},{"year":2017,"cited_by_count":2},{"year":2016,"cited_by_count":1},{"year":2015,"cited_by_count":2},{"year":2014,"cited_by_count":2},{"year":2013,"cited_by_count":4},{"year":2012,"cited_by_count":2}],"updated_date":"2025-03-18T12:13:59.332084","created_date":"2016-06-24"}