{"id":"https://openalex.org/W2135365788","doi":"https://doi.org/10.1109/tmi.2002.803119","title":"An accurate and efficient Bayesian method for automatic segmentation of brain MRI","display_name":"An accurate and efficient Bayesian method for automatic segmentation of brain MRI","publication_year":2002,"publication_date":"2002-08-01","ids":{"openalex":"https://openalex.org/W2135365788","doi":"https://doi.org/10.1109/tmi.2002.803119","mag":"2135365788","pmid":"https://pubmed.ncbi.nlm.nih.gov/12472266"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tmi.2002.803119","pdf_url":null,"source":{"id":"https://openalex.org/S58069681","display_name":"IEEE Transactions on Medical Imaging","issn_l":"0278-0062","issn":["0278-0062","1558-254X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5110033332","display_name":"Jos\u00e9 L. Marroqu\u00edn","orcid":null},"institutions":[{"id":"https://openalex.org/I124618812","display_name":"Mathematics Research Center","ror":"https://ror.org/02nhmp827","country_code":"MX","type":"facility","lineage":["https://openalex.org/I124618812"]}],"countries":["MX"],"is_corresponding":false,"raw_author_name":"J.L. Marroquin","raw_affiliation_strings":["Centro de Investigaciones en Matematicas, Guanajuato, Mexico"],"affiliations":[{"raw_affiliation_string":"Centro de Investigaciones en Matematicas, Guanajuato, Mexico","institution_ids":["https://openalex.org/I124618812"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5016378470","display_name":"Baba C. Vemuri","orcid":"https://orcid.org/0000-0002-1400-5844"},"institutions":[{"id":"https://openalex.org/I33213144","display_name":"University of Florida","ror":"https://ror.org/02y3ad647","country_code":"US","type":"funder","lineage":["https://openalex.org/I33213144"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"B.C. Vemuri","raw_affiliation_strings":["Dept. of Computer & Information Science & Engineering, University of Florida, Gainesville, USA"],"affiliations":[{"raw_affiliation_string":"Dept. of Computer & Information Science & Engineering, University of Florida, Gainesville, USA","institution_ids":["https://openalex.org/I33213144"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5012259761","display_name":"Salvador Botello","orcid":null},"institutions":[{"id":"https://openalex.org/I124618812","display_name":"Mathematics Research Center","ror":"https://ror.org/02nhmp827","country_code":"MX","type":"facility","lineage":["https://openalex.org/I124618812"]}],"countries":["MX"],"is_corresponding":false,"raw_author_name":"S. Botello","raw_affiliation_strings":["Centro de Investigacion en Matematicas, Guanajuato, Gto., Mexico"],"affiliations":[{"raw_affiliation_string":"Centro de Investigacion en Matematicas, Guanajuato, Gto., Mexico","institution_ids":["https://openalex.org/I124618812"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5064346338","display_name":"Edwin Calderon-Mendoza","orcid":"https://orcid.org/0000-0002-0334-324X"},"institutions":[{"id":"https://openalex.org/I173755004","display_name":"Universidad Michoacana de San Nicol\u00e1s de Hidalgo","ror":"https://ror.org/00z0kq074","country_code":"MX","type":"funder","lineage":["https://openalex.org/I173755004"]}],"countries":["MX"],"is_corresponding":false,"raw_author_name":"E. Calderon","raw_affiliation_strings":["Division of Estudios Postgrado, Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Michoacan, Mexico"],"affiliations":[{"raw_affiliation_string":"Division of Estudios Postgrado, Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Michoacan, Mexico","institution_ids":["https://openalex.org/I173755004"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5028508284","display_name":"Antonio Fern\u00e1ndez-Bouzas","orcid":null},"institutions":[{"id":"https://openalex.org/I8961855","display_name":"Universidad Nacional Aut\u00f3noma de M\u00e9xico","ror":"https://ror.org/01tmp8f25","country_code":"MX","type":"funder","lineage":["https://openalex.org/I8961855"]}],"countries":["MX"],"is_corresponding":false,"raw_author_name":"A. Fernandez-Bouzas","raw_affiliation_strings":["UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO"],"affiliations":[{"raw_affiliation_string":"UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO","institution_ids":["https://openalex.org/I8961855"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":4,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":9.863,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":256,"citation_normalized_percentile":{"value":0.984034,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":98,"max":99},"biblio":{"volume":"21","issue":"8","first_page":"934","last_page":"945"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9893,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10824","display_name":"Image Retrieval and Classification Techniques","score":0.9885,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/initialization","display_name":"Initialization","score":0.6485609}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7448853},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.73782027},{"id":"https://openalex.org/C114466953","wikidata":"https://www.wikidata.org/wiki/Q6034165","display_name":"Initialization","level":2,"score":0.6485609},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.63959277},{"id":"https://openalex.org/C54170458","wikidata":"https://www.wikidata.org/wiki/Q663554","display_name":"Voxel","level":2,"score":0.6113301},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.5610154},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.49868155},{"id":"https://openalex.org/C182081679","wikidata":"https://www.wikidata.org/wiki/Q1275153","display_name":"Expectation\u2013maximization algorithm","level":3,"score":0.48896444},{"id":"https://openalex.org/C204241405","wikidata":"https://www.wikidata.org/wiki/Q461499","display_name":"Transformation (genetics)","level":3,"score":0.46407488},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.46118695},{"id":"https://openalex.org/C117251300","wikidata":"https://www.wikidata.org/wiki/Q1849855","display_name":"Parametric statistics","level":2,"score":0.42250487},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.41924086},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.163537},{"id":"https://openalex.org/C49781872","wikidata":"https://www.wikidata.org/wiki/Q1045555","display_name":"Maximum likelihood","level":2,"score":0.13183555},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[{"descriptor_ui":"D000465","descriptor_name":"Algorithms","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D001499","descriptor_name":"Bayes Theorem","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D001921","descriptor_name":"Brain","qualifier_ui":"Q000033","qualifier_name":"anatomy & histology","is_major_topic":true},{"descriptor_ui":"D007090","descriptor_name":"Image Interpretation, Computer-Assisted","qualifier_ui":"Q000379","qualifier_name":"methods","is_major_topic":true},{"descriptor_ui":"D021621","descriptor_name":"Imaging, Three-Dimensional","qualifier_ui":"Q000379","qualifier_name":"methods","is_major_topic":true},{"descriptor_ui":"D008279","descriptor_name":"Magnetic Resonance Imaging","qualifier_ui":"Q000379","qualifier_name":"methods","is_major_topic":true},{"descriptor_ui":"D010363","descriptor_name":"Pattern Recognition, Automated","qualifier_ui":"","qualifier_name":null,"is_major_topic":true},{"descriptor_ui":"D001921","descriptor_name":"Brain","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D003198","descriptor_name":"Computer Simulation","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D016208","descriptor_name":"Databases, Factual","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D006801","descriptor_name":"Humans","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D007089","descriptor_name":"Image Enhancement","qualifier_ui":"Q000379","qualifier_name":"methods","is_major_topic":false},{"descriptor_ui":"D007089","descriptor_name":"Image Enhancement","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D007090","descriptor_name":"Image Interpretation, Computer-Assisted","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D021621","descriptor_name":"Imaging, Three-Dimensional","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D008279","descriptor_name":"Magnetic Resonance Imaging","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D008959","descriptor_name":"Models, Neurological","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D015233","descriptor_name":"Models, Statistical","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D011786","descriptor_name":"Quality Control","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D015203","descriptor_name":"Reproducibility of Results","qualifier_ui":"","qualifier_name":null,"is_major_topic":false},{"descriptor_ui":"D012680","descriptor_name":"Sensitivity and Specificity","qualifier_ui":"","qualifier_name":null,"is_major_topic":false}],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tmi.2002.803119","pdf_url":null,"source":{"id":"https://openalex.org/S58069681","display_name":"IEEE Transactions on Medical Imaging","issn_l":"0278-0062","issn":["0278-0062","1558-254X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/12472266","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":48,"referenced_works":["https://openalex.org/W1541559353","https://openalex.org/W1541580970","https://openalex.org/W1573041381","https://openalex.org/W1603265063","https://openalex.org/W1933374204","https://openalex.org/W2004063975","https://openalex.org/W2006713229","https://openalex.org/W2019635781","https://openalex.org/W2020278873","https://openalex.org/W2020999234","https://openalex.org/W2021640751","https://openalex.org/W2022495783","https://openalex.org/W2024060531","https://openalex.org/W2034432063","https://openalex.org/W2035736092","https://openalex.org/W2044092843","https://openalex.org/W2060427122","https://openalex.org/W2068484625","https://openalex.org/W2085604076","https://openalex.org/W2098069737","https://openalex.org/W2099801199","https://openalex.org/W2103749046","https://openalex.org/W2107920575","https://openalex.org/W2109911863","https://openalex.org/W2114220616","https://openalex.org/W2114289522","https://openalex.org/W2121742207","https://openalex.org/W2122165678","https://openalex.org/W2125368558","https://openalex.org/W2125504089","https://openalex.org/W2128566668","https://openalex.org/W2130686832","https://openalex.org/W2131036905","https://openalex.org/W2132499268","https://openalex.org/W2136573752","https://openalex.org/W2157848968","https://openalex.org/W2158167845","https://openalex.org/W2161591846","https://openalex.org/W2162630772","https://openalex.org/W2166916666","https://openalex.org/W2171612090","https://openalex.org/W2338249097","https://openalex.org/W2525550428","https://openalex.org/W2544894372","https://openalex.org/W2799061466","https://openalex.org/W3102998284","https://openalex.org/W4239875977","https://openalex.org/W4249533638"],"related_works":["https://openalex.org/W3204184292","https://openalex.org/W3176564347","https://openalex.org/W3090561264","https://openalex.org/W3031039437","https://openalex.org/W2553519758","https://openalex.org/W2355833770","https://openalex.org/W2117469974","https://openalex.org/W2078124810","https://openalex.org/W2041758614","https://openalex.org/W1985458517"],"abstract_inverted_index":{"Automatic":[0],"three-dimensional":[1],"(3-D)":[2],"segmentation":[3,49],"of":[4,22,65,85,156,195,198,203],"the":[5,26,30,61,83,108,112,124,157,172,177,196],"brain":[6,52,90,110,125],"from":[7,126],"magnetic":[8],"resonance":[9],"(MR)":[10],"scans":[11],"is":[12,92,119,150,153],"a":[13,66,97,103,147,154,162],"challenging":[14],"problem":[15],"that":[16,71,106,160,202],"has":[17,56],"received":[18],"an":[19,42,141],"enormous":[20],"amount":[21],"attention":[23],"lately.":[24],"Of":[25],"techniques":[27],"reported":[28],"in":[29,94],"literature,":[31],"very":[32],"few":[33],"are":[34,80,189],"fully":[35,46],"automatic.":[36],"In":[37],"this":[38],"paper,":[39],"we":[40],"present":[41],"efficient":[43],"and":[44,139,164,186],"accurate,":[45],"automatic":[47,143],"3-D":[48],"procedure":[50,100],"for":[51,82,132],"MR":[53],"scans.":[54],"It":[55],"several":[57],"salient":[58],"features;":[59],"namely,":[60],"following.":[62],"1)":[63],"Instead":[64],"single":[67],"multiplicative":[68],"bias":[69],"field":[70],"affects":[72],"all":[73],"tissue":[74],"intensities,":[75],"separate":[76],"parametric":[77],"smooth":[78],"models":[79,174],"used":[81,93,121],"intensity":[84,173],"each":[86,133,136],"class.":[87],"2)":[88],"A":[89],"atlas":[91],"conjunction":[95],"with":[96,176,183,201],"robust":[98],"registration":[99],"to":[101,111,114,167],"find":[102,140,168],"nonrigid":[104],"transformation":[105,118],"maps":[107],"standard":[109],"specimen":[113],"be":[115],"segmented.":[116],"This":[117],"then":[120],"to:":[122],"segment":[123],"nonbrain":[127],"tissue;":[128],"compute":[129],"prior":[130],"probabilities":[131],"class":[134],"at":[135],"voxel":[137],"location":[138],"appropriate":[142],"initialization.":[144],"3)":[145],"Finally,":[146],"novel":[148],"algorithm":[149,200],"presented":[151],"which":[152],"variant":[155],"expectation-maximization":[158],"procedure,":[159],"incorporates":[161],"fast":[163],"accurate":[165],"way":[166],"optimal":[169],"segmentations,":[170],"given":[171],"along":[175],"spatial":[178],"coherence":[179],"assumption.":[180],"Experimental":[181],"results":[182],"both":[184],"synthetic":[185],"real":[187],"data":[188],"included,":[190],"as":[191,193],"well":[192],"comparisons":[194],"performance":[197],"our":[199],"other":[204],"published":[205],"methods.":[206]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2135365788","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":5},{"year":2021,"cited_by_count":2},{"year":2020,"cited_by_count":3},{"year":2019,"cited_by_count":6},{"year":2018,"cited_by_count":7},{"year":2017,"cited_by_count":9},{"year":2016,"cited_by_count":2},{"year":2015,"cited_by_count":16},{"year":2014,"cited_by_count":12},{"year":2013,"cited_by_count":17},{"year":2012,"cited_by_count":17}],"updated_date":"2025-04-20T11:37:27.728595","created_date":"2016-06-24"}