{"id":"https://openalex.org/W3183523595","doi":"https://doi.org/10.1109/tkde.2021.3098612","title":"Urban flow pattern mining based on multi-source heterogeneous data fusion and knowledge graph embedding","display_name":"Urban flow pattern mining based on multi-source heterogeneous data fusion and knowledge graph embedding","publication_year":2021,"publication_date":"2021-01-01","ids":{"openalex":"https://openalex.org/W3183523595","doi":"https://doi.org/10.1109/tkde.2021.3098612","mag":"3183523595"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tkde.2021.3098612","pdf_url":null,"source":{"id":"https://openalex.org/S30698027","display_name":"IEEE Transactions on Knowledge and Data Engineering","issn_l":"1041-4347","issn":["1041-4347","1558-2191","2326-3865"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320439","host_organization_name":"IEEE Computer Society","host_organization_lineage":["https://openalex.org/P4310320439","https://openalex.org/P4310319808"],"host_organization_lineage_names":["IEEE Computer Society","Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100409694","display_name":"Jia Liu","orcid":"https://orcid.org/0000-0002-2910-3447"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Jia Liu","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5070559820","display_name":"Tianrui Li","orcid":"https://orcid.org/0000-0001-7780-104X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Tianrui Li","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5073011466","display_name":"Shenggong Ji","orcid":"https://orcid.org/0000-0001-9136-7737"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shenggong Ji","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101541956","display_name":"Peng Xie","orcid":"https://orcid.org/0000-0003-2218-6662"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Peng Xie","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101568332","display_name":"Shengdong Du","orcid":"https://orcid.org/0000-0001-8035-405X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shengdong Du","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"middle","author":{"id":"https://openalex.org/A5104051758","display_name":"Fei Teng","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Fei Teng","raw_affiliation_strings":[],"affiliations":[]},{"author_position":"last","author":{"id":"https://openalex.org/A5100778479","display_name":"Junbo Zhang","orcid":"https://orcid.org/0000-0001-5947-1374"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Junbo Zhang","raw_affiliation_strings":[],"affiliations":[]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":3.784,"has_fulltext":false,"cited_by_count":27,"citation_normalized_percentile":{"value":0.783134,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"1"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11980","display_name":"Human Mobility and Location-Based Analysis","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11980","display_name":"Human Mobility and Location-Based Analysis","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11344","display_name":"Traffic Prediction and Management Techniques","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10698","display_name":"Transportation Planning and Optimization","score":0.9709,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.5423047},{"id":"https://openalex.org/keywords/representation","display_name":"Representation","score":0.47209662}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.79617846},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.6379366},{"id":"https://openalex.org/C25343380","wikidata":"https://www.wikidata.org/wiki/Q277521","display_name":"Relation (database)","level":2,"score":0.5953248},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.5423047},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.49957323},{"id":"https://openalex.org/C206588197","wikidata":"https://www.wikidata.org/wiki/Q846574","display_name":"Reuse","level":2,"score":0.48576978},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.47780615},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.47209662},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.2782507},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.23157671},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.111944824},{"id":"https://openalex.org/C18903297","wikidata":"https://www.wikidata.org/wiki/Q7150","display_name":"Ecology","level":1,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tkde.2021.3098612","pdf_url":null,"source":{"id":"https://openalex.org/S30698027","display_name":"IEEE Transactions on Knowledge and Data Engineering","issn_l":"1041-4347","issn":["1041-4347","1558-2191","2326-3865"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320439","host_organization_name":"IEEE Computer Society","host_organization_lineage":["https://openalex.org/P4310320439","https://openalex.org/P4310319808"],"host_organization_lineage_names":["IEEE Computer Society","Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/11","display_name":"Sustainable cities and communities","score":0.84}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61773324"}],"datasets":[],"versions":[],"referenced_works_count":40,"referenced_works":["https://openalex.org/W2064675550","https://openalex.org/W2089468765","https://openalex.org/W2112738128","https://openalex.org/W2247119764","https://openalex.org/W2281126320","https://openalex.org/W2283196293","https://openalex.org/W2295598076","https://openalex.org/W2514852614","https://openalex.org/W2528639018","https://openalex.org/W2728059831","https://openalex.org/W2741267865","https://openalex.org/W2780684356","https://openalex.org/W2794492456","https://openalex.org/W2809035759","https://openalex.org/W2881789322","https://openalex.org/W2889833307","https://openalex.org/W2901497543","https://openalex.org/W2911847446","https://openalex.org/W2914041468","https://openalex.org/W2922146383","https://openalex.org/W2932637973","https://openalex.org/W2940585064","https://openalex.org/W2945377681","https://openalex.org/W2950817888","https://openalex.org/W2952613166","https://openalex.org/W2963224980","https://openalex.org/W2963637710","https://openalex.org/W2963870721","https://openalex.org/W2964279602","https://openalex.org/W2964319113","https://openalex.org/W2990668210","https://openalex.org/W2991533150","https://openalex.org/W2998039866","https://openalex.org/W3000301417","https://openalex.org/W3001807478","https://openalex.org/W3003595822","https://openalex.org/W3022729904","https://openalex.org/W3033535063","https://openalex.org/W3094231942","https://openalex.org/W3099387504"],"related_works":["https://openalex.org/W915438175","https://openalex.org/W4321353415","https://openalex.org/W4246352526","https://openalex.org/W4230315250","https://openalex.org/W2745001401","https://openalex.org/W2378211422","https://openalex.org/W2130974462","https://openalex.org/W2121910908","https://openalex.org/W2086519370","https://openalex.org/W2028665553"],"abstract_inverted_index":{"Urban":[0],"flow":[1,14,51,59,79,117],"analysis":[2,16],"is":[3,39,125,145],"an":[4],"essential":[5],"research":[6],"for":[7,49],"smart":[8],"city":[9],"construction,":[10],"in":[11],"which":[12],"urban":[13,23,34,58],"pattern":[15,52,80],"focuses":[17],"on":[18,107],"the":[19,57,69,72,75,84,90,99,108,112,122,142,149],"continuous":[20],"state":[21],"of":[22,65,74,102,115],"flow.":[24],"How":[25],"to":[26,53,97],"mine,":[27],"store":[28,56],"and":[29,55,77,86,104,135,154],"reuse":[30],"traffic":[31],"patterns":[32,118],"from":[33],"multi-source":[35],"heterogeneous":[36],"big":[37],"data":[38],"challenging.":[40],"Therefore,":[41],"this":[42],"paper":[43],"proposes":[44],"a":[45],"knowledge":[46,113,150],"mining":[47],"network":[48],"regional":[50,116],"mine":[54],"pattern.":[60],"The":[61],"proposed":[62,123,143],"model":[63,124,144],"consists":[64],"two":[66],"modules.":[67],"In":[68,89,147],"first":[70],"module,":[71,92],"features":[73,94],"region":[76],"its":[78],"are":[81,95,119,152,158],"extracted":[82],"as":[83],"entity":[85],"relation,":[87],"respectively.":[88],"second":[91],"POI":[93,136],"modeled":[96],"enhance":[98],"embedding":[100],"representation":[101],"relation":[103],"entity.":[105],"Based":[106],"translation":[109],"distance":[110],"method,":[111],"triplets":[114,151],"mined.":[120],"Finally,":[121],"compared":[126],"with":[127],"some":[128,155],"benchmark":[129],"methods":[130],"using":[131],"Chengdu":[132],"Didi":[133],"order":[134],"datasets.":[137],"Experimental":[138],"results":[139],"show":[140],"that":[141],"effective.":[146],"addition,":[148],"visualized":[153],"application":[156],"examples":[157],"introduced.":[159]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3183523595","counts_by_year":[{"year":2024,"cited_by_count":11},{"year":2023,"cited_by_count":13},{"year":2022,"cited_by_count":3}],"updated_date":"2025-01-05T23:18:04.765753","created_date":"2021-08-02"}