{"id":"https://openalex.org/W3091075457","doi":"https://doi.org/10.1109/tkde.2020.3028422","title":"Joint Representation Learning and Clustering: A Framework for Grouping Partial Multiview Data","display_name":"Joint Representation Learning and Clustering: A Framework for Grouping Partial Multiview Data","publication_year":2020,"publication_date":"2020-10-02","ids":{"openalex":"https://openalex.org/W3091075457","doi":"https://doi.org/10.1109/tkde.2020.3028422","mag":"3091075457"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tkde.2020.3028422","pdf_url":null,"source":{"id":"https://openalex.org/S30698027","display_name":"IEEE Transactions on Knowledge and Data Engineering","issn_l":"1041-4347","issn":["1041-4347","1558-2191","2326-3865"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320439","host_organization_name":"IEEE Computer Society","host_organization_lineage":["https://openalex.org/P4310320439","https://openalex.org/P4310319808"],"host_organization_lineage_names":["IEEE Computer Society","Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5017247900","display_name":"Wenzhang Zhuge","orcid":"https://orcid.org/0000-0001-5726-4697"},"institutions":[{"id":"https://openalex.org/I170215575","display_name":"National University of Defense Technology","ror":"https://ror.org/05d2yfz11","country_code":"CN","type":"funder","lineage":["https://openalex.org/I170215575"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wenzhang Zhuge","raw_affiliation_strings":["College of Liberal Arts and Science, National University of Defense Technology, Changsha, China"],"affiliations":[{"raw_affiliation_string":"College of Liberal Arts and Science, National University of Defense Technology, Changsha, China","institution_ids":["https://openalex.org/I170215575"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5010022982","display_name":"Hong Tao","orcid":"https://orcid.org/0000-0002-0924-5683"},"institutions":[{"id":"https://openalex.org/I170215575","display_name":"National University of Defense Technology","ror":"https://ror.org/05d2yfz11","country_code":"CN","type":"funder","lineage":["https://openalex.org/I170215575"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Hong Tao","raw_affiliation_strings":["College of Liberal Arts and Science, National University of Defense Technology, Changsha, China"],"affiliations":[{"raw_affiliation_string":"College of Liberal Arts and Science, National University of Defense Technology, Changsha, China","institution_ids":["https://openalex.org/I170215575"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5103173023","display_name":"Tingjin Luo","orcid":"https://orcid.org/0000-0002-4328-4627"},"institutions":[{"id":"https://openalex.org/I170215575","display_name":"National University of Defense Technology","ror":"https://ror.org/05d2yfz11","country_code":"CN","type":"funder","lineage":["https://openalex.org/I170215575"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Tingjin Luo","raw_affiliation_strings":["College of Liberal Arts and Science, National University of Defense Technology, Changsha, China"],"affiliations":[{"raw_affiliation_string":"College of Liberal Arts and Science, National University of Defense Technology, Changsha, China","institution_ids":["https://openalex.org/I170215575"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5014129699","display_name":"Ling\u2010Li Zeng","orcid":"https://orcid.org/0000-0002-0515-256X"},"institutions":[{"id":"https://openalex.org/I170215575","display_name":"National University of Defense Technology","ror":"https://ror.org/05d2yfz11","country_code":"CN","type":"funder","lineage":["https://openalex.org/I170215575"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Ling-Li Zeng","raw_affiliation_strings":["College of Mechatronics and Automation, National University of Defense Technology, Changsha, China"],"affiliations":[{"raw_affiliation_string":"College of Mechatronics and Automation, National University of Defense Technology, Changsha, China","institution_ids":["https://openalex.org/I170215575"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5091529433","display_name":"Chenping Hou","orcid":"https://orcid.org/0000-0002-9335-0469"},"institutions":[{"id":"https://openalex.org/I170215575","display_name":"National University of Defense Technology","ror":"https://ror.org/05d2yfz11","country_code":"CN","type":"funder","lineage":["https://openalex.org/I170215575"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chenping Hou","raw_affiliation_strings":["College of Liberal Arts and Science, National University of Defense Technology, Changsha, China"],"affiliations":[{"raw_affiliation_string":"College of Liberal Arts and Science, National University of Defense Technology, Changsha, China","institution_ids":["https://openalex.org/I170215575"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5064728173","display_name":"Dongyun Yi","orcid":null},"institutions":[{"id":"https://openalex.org/I916048824","display_name":"Hunan First Normal University","ror":"https://ror.org/00s9d1a36","country_code":"CN","type":"education","lineage":["https://openalex.org/I916048824"]},{"id":"https://openalex.org/I170215575","display_name":"National University of Defense Technology","ror":"https://ror.org/05d2yfz11","country_code":"CN","type":"funder","lineage":["https://openalex.org/I170215575"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Dongyun Yi","raw_affiliation_strings":["College of Liberal Arts and Science, National University of Defense Technology, Changsha, China","School of Mathematics and Computing Science, Hunan First Normal University, Changsha, China"],"affiliations":[{"raw_affiliation_string":"School of Mathematics and Computing Science, Hunan First Normal University, Changsha, China","institution_ids":["https://openalex.org/I916048824"]},{"raw_affiliation_string":"College of Liberal Arts and Science, National University of Defense Technology, Changsha, China","institution_ids":["https://openalex.org/I170215575"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.861,"has_fulltext":false,"cited_by_count":13,"citation_normalized_percentile":{"value":0.836869,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":88,"max":89},"biblio":{"volume":"34","issue":"8","first_page":"3826","last_page":"3840"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9944,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9944,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11550","display_name":"Text and Document Classification Technologies","score":0.9937,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10637","display_name":"Advanced Clustering Algorithms Research","score":0.9857,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/spectral-clustering","display_name":"Spectral Clustering","score":0.64479536},{"id":"https://openalex.org/keywords/representation","display_name":"Representation","score":0.51392245},{"id":"https://openalex.org/keywords/biclustering","display_name":"Biclustering","score":0.47540742},{"id":"https://openalex.org/keywords/feature-learning","display_name":"Feature Learning","score":0.4643742},{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.45800045},{"id":"https://openalex.org/keywords/constrained-clustering","display_name":"Constrained clustering","score":0.42429852}],"concepts":[{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.8549136},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.75730073},{"id":"https://openalex.org/C105611402","wikidata":"https://www.wikidata.org/wiki/Q2976589","display_name":"Spectral clustering","level":3,"score":0.64479536},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.61855793},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5425218},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.51392245},{"id":"https://openalex.org/C94641424","wikidata":"https://www.wikidata.org/wiki/Q5172845","display_name":"Correlation clustering","level":3,"score":0.49797273},{"id":"https://openalex.org/C144817290","wikidata":"https://www.wikidata.org/wiki/Q2976575","display_name":"Biclustering","level":5,"score":0.47540742},{"id":"https://openalex.org/C59404180","wikidata":"https://www.wikidata.org/wiki/Q17013334","display_name":"Feature learning","level":2,"score":0.4643742},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.45800045},{"id":"https://openalex.org/C27964816","wikidata":"https://www.wikidata.org/wiki/Q5164359","display_name":"Constrained clustering","level":5,"score":0.42429852},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3901316},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.38488418},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.38458368},{"id":"https://openalex.org/C104047586","wikidata":"https://www.wikidata.org/wiki/Q5033439","display_name":"Canopy clustering algorithm","level":4,"score":0.32183373},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.1860396},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tkde.2020.3028422","pdf_url":null,"source":{"id":"https://openalex.org/S30698027","display_name":"IEEE Transactions on Knowledge and Data Engineering","issn_l":"1041-4347","issn":["1041-4347","1558-2191","2326-3865"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320439","host_organization_name":"IEEE Computer Society","host_organization_lineage":["https://openalex.org/P4310320439","https://openalex.org/P4310319808"],"host_organization_lineage_names":["IEEE Computer Society","Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61922087"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61906201"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"62006238"}],"datasets":[],"versions":[],"referenced_works_count":37,"referenced_works":["https://openalex.org/W1504886279","https://openalex.org/W1550614472","https://openalex.org/W1879834137","https://openalex.org/W1937059634","https://openalex.org/W2007477772","https://openalex.org/W2049365101","https://openalex.org/W2050997020","https://openalex.org/W2068914392","https://openalex.org/W2085789144","https://openalex.org/W2086685817","https://openalex.org/W2129250947","https://openalex.org/W2130623086","https://openalex.org/W2130664853","https://openalex.org/W2148029428","https://openalex.org/W2150590906","https://openalex.org/W2158911526","https://openalex.org/W2181159407","https://openalex.org/W2272957886","https://openalex.org/W2532239287","https://openalex.org/W2560185252","https://openalex.org/W2569859441","https://openalex.org/W2577472518","https://openalex.org/W2590019597","https://openalex.org/W2620814161","https://openalex.org/W2672266311","https://openalex.org/W2741236095","https://openalex.org/W2742098698","https://openalex.org/W2765145408","https://openalex.org/W2886916218","https://openalex.org/W2897402090","https://openalex.org/W2906529026","https://openalex.org/W2963517422","https://openalex.org/W2963830375","https://openalex.org/W2964809302","https://openalex.org/W2965787265","https://openalex.org/W2972477132","https://openalex.org/W881606563"],"related_works":["https://openalex.org/W3161541212","https://openalex.org/W3146523624","https://openalex.org/W3140018618","https://openalex.org/W2555816786","https://openalex.org/W2407786351","https://openalex.org/W2186905933","https://openalex.org/W2171583777","https://openalex.org/W2160785859","https://openalex.org/W1979094538","https://openalex.org/W1525022337"],"abstract_inverted_index":{"Partial":[0],"multi-view":[1,105],"clustering":[2,22,63,89,94,106,170],"has":[3],"attracted":[4],"various":[5,165],"attentions":[6],"from":[7,66],"diverse":[8],"fields.":[9],"Most":[10],"existing":[11,113],"methods":[12,107],"adopt":[13],"separate":[14,25],"steps":[15],"to":[16,31,33,50,60,76,91,152],"obtain":[17],"unified":[18],"representations":[19],"and":[20,46,73,88,134,140,160,167],"extract":[21,61],"indicators.":[23],"This":[24],"manner":[26],"prevents":[27],"two":[28,126],"learning":[29,87,117],"processes":[30],"negotiate":[32],"achieve":[34,92],"optimal":[35],"performance.":[36,95],"In":[37],"this":[38,52],"paper,":[39],"we":[40,124],"propose":[41,125],"the":[42,67,97,122,154,173,176],"Joint":[43],"Representation":[44],"Learning":[45],"Clustering":[47],"(JRLC)":[48],"framework":[49,56],"address":[51],"issue.":[53],"The":[54],"JRLC":[55,100,129,135],"employs":[57],"representation":[58,86,116],"matrices":[59],"view-specific":[62],"information":[64],"directly":[65],"presence":[68],"of":[69,99,158,175],"partial":[70],"similarity":[71],"matrices,":[72],"rotates":[74],"them":[75],"learn":[77],"a":[78],"common":[79],"probability":[80],"label":[81],"matrix":[82],"simultaneously,":[83],"which":[84],"connects":[85],"seamlessly":[90],"better":[93],"Under":[96],"guidance":[98],"framework,":[101,123],"several":[102],"new":[103],"incomplete":[104],"can":[108],"be":[109],"developed":[110],"by":[111],"extending":[112],"single-view":[114],"graph-based":[115],"methods.":[118],"For":[119],"illustration,":[120],"within":[121],"specific":[127],"methods,":[128],"with":[130,147],"spectral":[131,141],"embedding":[132,139,142],"(JRLC-SE)":[133],"via":[136],"integrating":[137],"nonnegative":[138],"(JRLC-NS).":[143],"Two":[144],"iterative":[145],"algorithms":[146],"guaranteed":[148],"convergence":[149],"are":[150],"designed":[151],"solve":[153],"resultant":[155],"optimization":[156],"problems":[157],"JRLC-SE":[159],"JRLC-NS.":[161],"Experimental":[162],"results":[163],"on":[164],"datasets":[166],"news":[168],"topic":[169],"application":[171],"demonstrate":[172],"effectiveness":[174],"proposed":[177],"algorithms.":[178]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3091075457","counts_by_year":[{"year":2024,"cited_by_count":4},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":5},{"year":2020,"cited_by_count":1}],"updated_date":"2025-04-21T08:10:31.681868","created_date":"2020-10-08"}