{"id":"https://openalex.org/W2335163676","doi":"https://doi.org/10.1109/tkde.2016.2541148","title":"CMiner: Opinion Extraction and Summarization for Chinese Microblogs","display_name":"CMiner: Opinion Extraction and Summarization for Chinese Microblogs","publication_year":2016,"publication_date":"2016-03-11","ids":{"openalex":"https://openalex.org/W2335163676","doi":"https://doi.org/10.1109/tkde.2016.2541148","mag":"2335163676"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tkde.2016.2541148","pdf_url":null,"source":{"id":"https://openalex.org/S30698027","display_name":"IEEE Transactions on Knowledge and Data Engineering","issn_l":"1041-4347","issn":["1041-4347","1558-2191","2326-3865"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320439","host_organization_name":"IEEE Computer Society","host_organization_lineage":["https://openalex.org/P4310320439","https://openalex.org/P4310319808"],"host_organization_lineage_names":["IEEE Computer Society","Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101501383","display_name":"Xinjie Zhou","orcid":"https://orcid.org/0000-0002-0306-737X"},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xinjie Zhou","raw_affiliation_strings":["Institute of Computer Science and Technology, the MOE Key Lab of Computational Linguistics, Peking Universty, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Institute of Computer Science and Technology, the MOE Key Lab of Computational Linguistics, Peking Universty, Beijing, China","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5029568096","display_name":"Xiaojun Wan","orcid":"https://orcid.org/0000-0001-6887-1994"},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiaojun Wan","raw_affiliation_strings":["Institute of Computer Science and Technology, the MOE Key Lab of Computational Linguistics, Peking Universty, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Institute of Computer Science and Technology, the MOE Key Lab of Computational Linguistics, Peking Universty, Beijing, China","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100861201","display_name":"Jianguo Xiao","orcid":null},"institutions":[],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jianguo Xiao","raw_affiliation_strings":["Institute of Computer Science and Technology, the MOE Key Lab of Computational Linguistics, Peking Universty, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Institute of Computer Science and Technology, the MOE Key Lab of Computational Linguistics, Peking Universty, Beijing, China","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":6.976,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":60,"citation_normalized_percentile":{"value":0.955983,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":"28","issue":"7","first_page":"1650","last_page":"1663"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10664","display_name":"Sentiment Analysis and Opinion Mining","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10664","display_name":"Sentiment Analysis and Opinion Mining","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13083","display_name":"Advanced Text Analysis Techniques","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12016","display_name":"Web Data Mining and Analysis","score":0.9906,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/microblogging","display_name":"Microblogging","score":0.9555991},{"id":"https://openalex.org/keywords/sentiment-analysis","display_name":"Sentiment Analysis","score":0.7020896},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.629653},{"id":"https://openalex.org/keywords/multi-document-summarization","display_name":"Multi-document summarization","score":0.42107773}],"concepts":[{"id":"https://openalex.org/C143275388","wikidata":"https://www.wikidata.org/wiki/Q92438","display_name":"Microblogging","level":3,"score":0.9555991},{"id":"https://openalex.org/C170858558","wikidata":"https://www.wikidata.org/wiki/Q1394144","display_name":"Automatic summarization","level":2,"score":0.92997247},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8323196},{"id":"https://openalex.org/C518677369","wikidata":"https://www.wikidata.org/wiki/Q202833","display_name":"Social media","level":2,"score":0.78704304},{"id":"https://openalex.org/C66402592","wikidata":"https://www.wikidata.org/wiki/Q2271421","display_name":"Sentiment analysis","level":2,"score":0.7020896},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.629653},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.6059965},{"id":"https://openalex.org/C189430467","wikidata":"https://www.wikidata.org/wiki/Q7293293","display_name":"Ranking (information retrieval)","level":2,"score":0.5769559},{"id":"https://openalex.org/C2780801425","wikidata":"https://www.wikidata.org/wiki/Q5164392","display_name":"Construct (python library)","level":2,"score":0.45605442},{"id":"https://openalex.org/C134714966","wikidata":"https://www.wikidata.org/wiki/Q6934448","display_name":"Multi-document summarization","level":3,"score":0.42107773},{"id":"https://openalex.org/C2522767166","wikidata":"https://www.wikidata.org/wiki/Q2374463","display_name":"Data science","level":1,"score":0.40096834},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.3383779},{"id":"https://openalex.org/C136764020","wikidata":"https://www.wikidata.org/wiki/Q466","display_name":"World Wide Web","level":1,"score":0.24737167},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tkde.2016.2541148","pdf_url":null,"source":{"id":"https://openalex.org/S30698027","display_name":"IEEE Transactions on Knowledge and Data Engineering","issn_l":"1041-4347","issn":["1041-4347","1558-2191","2326-3865"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320439","host_organization_name":"IEEE Computer Society","host_organization_lineage":["https://openalex.org/P4310320439","https://openalex.org/P4310319808"],"host_organization_lineage_names":["IEEE Computer Society","Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61331011"}],"datasets":[],"versions":[],"referenced_works_count":43,"referenced_works":["https://openalex.org/W1517771839","https://openalex.org/W1552297528","https://openalex.org/W1630959083","https://openalex.org/W1638000437","https://openalex.org/W1814023381","https://openalex.org/W182185074","https://openalex.org/W1936155969","https://openalex.org/W1964613733","https://openalex.org/W1967579779","https://openalex.org/W2011450768","https://openalex.org/W2014902591","https://openalex.org/W2043775452","https://openalex.org/W2046240631","https://openalex.org/W2097521684","https://openalex.org/W2099929444","https://openalex.org/W2108646579","https://openalex.org/W2110693578","https://openalex.org/W2112744748","https://openalex.org/W2113125055","https://openalex.org/W2115834228","https://openalex.org/W2120779048","https://openalex.org/W2124156373","https://openalex.org/W2126183710","https://openalex.org/W2129604374","https://openalex.org/W2139621418","https://openalex.org/W2141631351","https://openalex.org/W2148966043","https://openalex.org/W2152992673","https://openalex.org/W2154970197","https://openalex.org/W2157470625","https://openalex.org/W2159457224","https://openalex.org/W2160660844","https://openalex.org/W2162010993","https://openalex.org/W2165232124","https://openalex.org/W2165612380","https://openalex.org/W2166334217","https://openalex.org/W2170414372","https://openalex.org/W2251380531","https://openalex.org/W2916445322","https://openalex.org/W3101913037","https://openalex.org/W4211186029","https://openalex.org/W644717764","https://openalex.org/W93018862"],"related_works":["https://openalex.org/W402673672","https://openalex.org/W3164984162","https://openalex.org/W2902627734","https://openalex.org/W2888780092","https://openalex.org/W2568827738","https://openalex.org/W2173208124","https://openalex.org/W2112885393","https://openalex.org/W2104677027","https://openalex.org/W2064423464","https://openalex.org/W1540611520"],"abstract_inverted_index":{"Sentiment":[0],"analysis":[1],"of":[2,8,19,43,107,146,195],"microblog":[3,90,139,149,183],"texts":[4],"has":[5],"drawn":[6],"lots":[7],"attention":[9],"in":[10,88,110,151],"both":[11,178],"the":[12,20,66,72,81,118,143,148,156,179,193,199],"academic":[13],"and":[14,58,69,162,166,182,198],"industrial":[15],"fields.":[16],"However,":[17],"most":[18],"current":[21],"work":[22],"only":[23],"focuses":[24,47],"on":[25,48,117,125,188],"polarity":[26,44],"classification.":[27],"In":[28,129],"this":[29],"paper,":[30],"we":[31,93,131,154],"present":[32],"an":[33,95,133],"opinion":[34,51,55,59,83,86,101,105,127,135,144,157,180],"mining":[35,52],"system":[36,197],"for":[37,65,100,138,168],"Chinese":[38],"microblogs":[39],"called":[40],"CMiner.":[41],"Instead":[42],"classification,":[45],"CMiner":[46,75],"more":[49],"complicated":[50],"tasks":[53,68],"-":[54],"target":[56,102],"extraction":[57],"summarization.":[60],"Novel":[61],"algorithms":[62],"are":[63,113],"developed":[64],"two":[67],"integrated":[70],"into":[71,159],"end-to-end":[73],"system.":[74],"can":[76],"help":[77],"to":[78,176],"effectively":[79],"understand":[80],"users'":[82],"towards":[84],"different":[85],"targets":[87,106,145,158,165,181],"a":[89,111,152,189],"topic.":[91],"Specially,":[92],"develop":[94],"unsupervised":[96],"label":[97],"propagation":[98],"algorithm":[99,173],"extraction.":[103],"The":[104],"all":[108,147],"messages":[109,122,150],"topic":[112],"collectively":[114],"extracted":[115],"based":[116],"assumption":[119],"that":[120],"similar":[121,126],"may":[123],"focus":[124],"targets.":[128],"addition,":[130],"build":[132],"aspect-based":[134],"summarization":[136],"framework":[137],"topics.":[140],"After":[141],"getting":[142],"topic,":[153],"cluster":[155],"several":[160],"groups":[161],"extract":[163],"representative":[164],"summaries":[167],"each":[169],"group.":[170],"A":[171],"co-ranking":[172],"is":[174],"proposed":[175],"rank":[177],"sentences":[184],"simultaneously.":[185],"Experimental":[186],"results":[187],"benchmark":[190],"dataset":[191],"show":[192],"effectiveness":[194],"our":[196],"algorithms.":[200]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2335163676","counts_by_year":[{"year":2024,"cited_by_count":5},{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":7},{"year":2021,"cited_by_count":9},{"year":2020,"cited_by_count":8},{"year":2019,"cited_by_count":14},{"year":2018,"cited_by_count":10},{"year":2017,"cited_by_count":4},{"year":2016,"cited_by_count":1}],"updated_date":"2025-01-17T23:23:34.067644","created_date":"2016-06-24"}