{"id":"https://openalex.org/W4379382547","doi":"https://doi.org/10.1109/tits.2023.3277974","title":"DVHN: A Deep Hashing Framework for Large-Scale Vehicle Re-Identification","display_name":"DVHN: A Deep Hashing Framework for Large-Scale Vehicle Re-Identification","publication_year":2023,"publication_date":"2023-06-05","ids":{"openalex":"https://openalex.org/W4379382547","doi":"https://doi.org/10.1109/tits.2023.3277974"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tits.2023.3277974","pdf_url":null,"source":{"id":"https://openalex.org/S144771191","display_name":"IEEE Transactions on Intelligent Transportation Systems","issn_l":"1524-9050","issn":["1524-9050","1558-0016"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2112.04937","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5034303334","display_name":"Yongbiao Chen","orcid":"https://orcid.org/0000-0002-7727-5489"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"funder","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yongbiao Chen","raw_affiliation_strings":["School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China","institution_ids":["https://openalex.org/I183067930"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100394022","display_name":"Sheng Zhang","orcid":"https://orcid.org/0000-0002-6581-6399"},"institutions":[{"id":"https://openalex.org/I1174212","display_name":"University of Southern California","ror":"https://ror.org/03taz7m60","country_code":"US","type":"funder","lineage":["https://openalex.org/I1174212"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Sheng Zhang","raw_affiliation_strings":["Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA"],"affiliations":[{"raw_affiliation_string":"Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA","institution_ids":["https://openalex.org/I1174212"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5017670541","display_name":"Fangxin Liu","orcid":"https://orcid.org/0000-0002-8769-293X"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"funder","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Fangxin Liu","raw_affiliation_strings":["School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China","institution_ids":["https://openalex.org/I183067930"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5046439614","display_name":"Chenggang Wu","orcid":"https://orcid.org/0000-0003-1777-8110"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"funder","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chenggang Wu","raw_affiliation_strings":["School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China","institution_ids":["https://openalex.org/I183067930"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5071363545","display_name":"Kaicheng Guo","orcid":"https://orcid.org/0000-0003-0493-1147"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"funder","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Kaicheng Guo","raw_affiliation_strings":["School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China","institution_ids":["https://openalex.org/I183067930"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5011323970","display_name":"Zhengwei Qi","orcid":"https://orcid.org/0000-0003-2730-2319"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"funder","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhengwei Qi","raw_affiliation_strings":["School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China","institution_ids":["https://openalex.org/I183067930"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.668,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.440506,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":82,"max":85},"biblio":{"volume":"24","issue":"9","first_page":"9268","last_page":"9280"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/binary-code","display_name":"Binary code","score":0.6687343},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.48643804},{"id":"https://openalex.org/keywords/identification","display_name":"Identification","score":0.42060983}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.77779603},{"id":"https://openalex.org/C99138194","wikidata":"https://www.wikidata.org/wiki/Q183427","display_name":"Hash function","level":2,"score":0.6944528},{"id":"https://openalex.org/C63435697","wikidata":"https://www.wikidata.org/wiki/Q864135","display_name":"Binary code","level":3,"score":0.6687343},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.5934873},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.57150203},{"id":"https://openalex.org/C1667742","wikidata":"https://www.wikidata.org/wiki/Q10927554","display_name":"Image retrieval","level":3,"score":0.49946308},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.48643804},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.4617114},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4615597},{"id":"https://openalex.org/C75165309","wikidata":"https://www.wikidata.org/wiki/Q2258979","display_name":"Search engine indexing","level":2,"score":0.45206627},{"id":"https://openalex.org/C116834253","wikidata":"https://www.wikidata.org/wiki/Q2039217","display_name":"Identification (biology)","level":2,"score":0.42060983},{"id":"https://openalex.org/C67388219","wikidata":"https://www.wikidata.org/wiki/Q207440","display_name":"Hash table","level":3,"score":0.41772538},{"id":"https://openalex.org/C48372109","wikidata":"https://www.wikidata.org/wiki/Q3913","display_name":"Binary number","level":2,"score":0.38619542},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3513767},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.17437431},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.07564965},{"id":"https://openalex.org/C59822182","wikidata":"https://www.wikidata.org/wiki/Q441","display_name":"Botany","level":1,"score":0.0},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C94375191","wikidata":"https://www.wikidata.org/wiki/Q11205","display_name":"Arithmetic","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tits.2023.3277974","pdf_url":null,"source":{"id":"https://openalex.org/S144771191","display_name":"IEEE Transactions on Intelligent Transportation Systems","issn_l":"1524-9050","issn":["1524-9050","1558-0016"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2112.04937","pdf_url":"http://arxiv.org/pdf/2112.04937","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2112.04937","pdf_url":"http://arxiv.org/pdf/2112.04937","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Industry, innovation and infrastructure","score":0.45,"id":"https://metadata.un.org/sdg/9"}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"62141218"}],"datasets":[],"versions":[],"referenced_works_count":59,"referenced_works":["https://openalex.org/W1913628733","https://openalex.org/W1939575207","https://openalex.org/W1974647172","https://openalex.org/W1996528178","https://openalex.org/W2011015278","https://openalex.org/W2012833704","https://openalex.org/W2077815765","https://openalex.org/W2108196201","https://openalex.org/W2124509324","https://openalex.org/W2194775991","https://openalex.org/W2204750386","https://openalex.org/W2293824885","https://openalex.org/W2418353079","https://openalex.org/W2464915613","https://openalex.org/W2468843375","https://openalex.org/W2470322391","https://openalex.org/W2508837377","https://openalex.org/W2512434173","https://openalex.org/W2519904008","https://openalex.org/W2565993688","https://openalex.org/W2598634450","https://openalex.org/W2621176975","https://openalex.org/W2747853580","https://openalex.org/W2756012011","https://openalex.org/W2766007816","https://openalex.org/W2776879428","https://openalex.org/W2779954854","https://openalex.org/W2788212895","https://openalex.org/W2798834175","https://openalex.org/W2799251491","https://openalex.org/W2832876791","https://openalex.org/W2919317477","https://openalex.org/W2954626788","https://openalex.org/W2955854238","https://openalex.org/W2963200533","https://openalex.org/W2963323172","https://openalex.org/W2963398644","https://openalex.org/W2964158883","https://openalex.org/W2964280870","https://openalex.org/W2980275434","https://openalex.org/W2982041213","https://openalex.org/W2991522752","https://openalex.org/W3004259714","https://openalex.org/W3025665229","https://openalex.org/W3034205626","https://openalex.org/W3034315422","https://openalex.org/W3034373842","https://openalex.org/W3035645942","https://openalex.org/W3091369929","https://openalex.org/W3092740872","https://openalex.org/W3093022186","https://openalex.org/W3121148671","https://openalex.org/W3176150713","https://openalex.org/W3187661226","https://openalex.org/W3187985423","https://openalex.org/W3188087362","https://openalex.org/W4281770359","https://openalex.org/W4295312788","https://openalex.org/W4309633513"],"related_works":["https://openalex.org/W4321369474","https://openalex.org/W4320933330","https://openalex.org/W4312417841","https://openalex.org/W4225654135","https://openalex.org/W3133861977","https://openalex.org/W3099385964","https://openalex.org/W2955632196","https://openalex.org/W2767557801","https://openalex.org/W2731899572","https://openalex.org/W2345852114"],"abstract_inverted_index":{"Vehicle":[0],"re-identification":[1,15,95,198],"is":[2,65],"a":[3,71],"pervasive":[4],"technology":[5],"in":[6,70,81,227],"real-world":[7,73,99],"intelligence":[8],"transportation":[9],"systems.":[10],"Conventional":[11],"methods":[12],"generally":[13],"perform":[14],"tasks":[16,102],"by":[17,31,133],"representing":[18],"vehicle":[19,94,197],"images":[20,30],"as":[21],"real-valued":[22,44],"feature":[23,45,137],"vectors":[24,46],"and":[25,53,55,59,113,140,162,201,223,231,242,248],"then":[26],"ranking":[27],"the":[28,33,62,86,136,141,150,153,164,174,205,211],"gallery":[29,63],"computing":[32],"corresponding":[34],"Euclidean":[35],"distances.":[36],"Despite":[37],"achieving":[38],"remarkable":[39],"retrieval":[40,74,101,115,119],"accuracy,":[41],"these":[42],"high-dimensional":[43],"are":[47,168],"not":[48],"tailored":[49],"for":[50,98,130,170,186,233,246],"fast":[51],"indexing":[52],"matching":[54],"require":[56],"tremendous":[57],"memory":[58,111],"computation":[60],"when":[61],"set":[64],"large,":[66],"making":[67],"them":[68],"inapplicable":[69],"large-scale":[72,100],"setting.":[75],"In":[76],"light":[77],"of":[78,207,217,229],"this":[79,82],"limitation,":[80],"paper,":[83],"we":[84,147,179,239],"make":[85],"very":[87],"first":[88],"attempt":[89],"to":[90,157],"develop":[91],"an":[92,182],"efficient":[93],"system":[96],"(DVHN)":[97],"with":[103],"deep":[104,175,213],"hashing":[105,128,177,190],"learning.":[106],"It":[107],"could":[108],"substantially":[109],"reduce":[110],"usage":[112],"enhances":[114],"efficiency":[116],"while":[117],"maintaining":[118],"accuracy.":[120],"Concretely,":[121],"DVHN":[122,216],"directly":[123,148],"learns":[124],"discrete":[125,159,176],"compact":[126],"binary":[127,160,166,188],"codes":[129,161,167],"each":[131],"image":[132],"jointly":[134],"optimizing":[135],"learning":[138,187],"network":[139,156],"hash":[142,214],"code":[143],"generating":[144],"module.":[145],"Specifically,":[146],"constrain":[149],"output":[151],"from":[152],"convolutional":[154],"neural":[155],"be":[158],"ensure":[163],"learned":[165],"optimal":[169],"classification.":[171],"To":[172],"optimize":[173],"framework,":[178],"further":[180],"propose":[181],"alternating":[183],"minimization":[184],"method":[185,209],"similarity-preserved":[189],"codes.":[191],"Extensive":[192],"experiments":[193],"on":[194],"two":[195],"widely-studied":[196],"datasets-":[199],"VehicleID":[200,234],"VeRi-":[202],"have":[203],"demonstrated":[204],"superiority":[206],"our":[208],"against":[210],"state-of-the-art":[212],"methods.":[215],"2048":[218],"bits":[219],"can":[220],"achieve":[221,240],"13.94%":[222],"10.21%":[224],"accuracy":[225],"improvement":[226],"terms":[228],"mAP":[230],"Rank@1":[232,247],"(800)":[235],"dataset.":[236],"For":[237],"VeRi,":[238],"35.45%":[241],"32.72%":[243],"performance":[244],"gains":[245],"mAP,":[249],"respectively.":[250]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4379382547","counts_by_year":[{"year":2024,"cited_by_count":3}],"updated_date":"2025-04-16T23:58:52.650127","created_date":"2023-06-06"}