{"id":"https://openalex.org/W3164576087","doi":"https://doi.org/10.1109/tits.2022.3146575","title":"Spatio-Contextual Deep Network-Based Multimodal Pedestrian Detection for Autonomous Driving","display_name":"Spatio-Contextual Deep Network-Based Multimodal Pedestrian Detection for Autonomous Driving","publication_year":2022,"publication_date":"2022-02-07","ids":{"openalex":"https://openalex.org/W3164576087","doi":"https://doi.org/10.1109/tits.2022.3146575","mag":"3164576087"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tits.2022.3146575","pdf_url":null,"source":{"id":"https://openalex.org/S144771191","display_name":"IEEE Transactions on Intelligent Transportation Systems","issn_l":"1524-9050","issn":["1524-9050","1558-0016"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/2105.12713","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5007429657","display_name":"Kinjal Dasgupta","orcid":"https://orcid.org/0000-0001-8488-3135"},"institutions":[{"id":"https://openalex.org/I6498739","display_name":"Indian Statistical Institute","ror":"https://ror.org/00q2w1j53","country_code":"IN","type":"funder","lineage":["https://openalex.org/I6498739"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Kinjal Dasgupta","raw_affiliation_strings":["Computer Vision and Pattern Recognition (CVPR) Unit, Indian Statistical Institute, Kolkata, India"],"affiliations":[{"raw_affiliation_string":"Computer Vision and Pattern Recognition (CVPR) Unit, Indian Statistical Institute, Kolkata, India","institution_ids":["https://openalex.org/I6498739"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101759453","display_name":"Arindam Das","orcid":"https://orcid.org/0000-0001-9564-691X"},"institutions":[],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Arindam Das","raw_affiliation_strings":["Department of Detection Vision Systems, Valeo India, Chennai, India"],"affiliations":[{"raw_affiliation_string":"Department of Detection Vision Systems, Valeo India, Chennai, India","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100703255","display_name":"Sudip Das","orcid":"https://orcid.org/0000-0002-8372-4316"},"institutions":[{"id":"https://openalex.org/I6498739","display_name":"Indian Statistical Institute","ror":"https://ror.org/00q2w1j53","country_code":"IN","type":"funder","lineage":["https://openalex.org/I6498739"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Sudip Das","raw_affiliation_strings":["Computer Vision and Pattern Recognition (CVPR) Unit, Indian Statistical Institute, Kolkata, India"],"affiliations":[{"raw_affiliation_string":"Computer Vision and Pattern Recognition (CVPR) Unit, Indian Statistical Institute, Kolkata, India","institution_ids":["https://openalex.org/I6498739"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5090127362","display_name":"Ujjwal Bhattacharya","orcid":"https://orcid.org/0000-0002-8546-6453"},"institutions":[{"id":"https://openalex.org/I6498739","display_name":"Indian Statistical Institute","ror":"https://ror.org/00q2w1j53","country_code":"IN","type":"funder","lineage":["https://openalex.org/I6498739"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Ujjwal Bhattacharya","raw_affiliation_strings":["Computer Vision and Pattern Recognition (CVPR) Unit, Indian Statistical Institute, Kolkata, India"],"affiliations":[{"raw_affiliation_string":"Computer Vision and Pattern Recognition (CVPR) Unit, Indian Statistical Institute, Kolkata, India","institution_ids":["https://openalex.org/I6498739"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5014764449","display_name":"Senthil Yogamani","orcid":"https://orcid.org/0000-0003-3755-4245"},"institutions":[{"id":"https://openalex.org/I4210126639","display_name":"Valeo (Ireland)","ror":"https://ror.org/031sgpn76","country_code":"IE","type":"company","lineage":["https://openalex.org/I220619192","https://openalex.org/I4210126639"]}],"countries":["IE"],"is_corresponding":false,"raw_author_name":"Senthil Yogamani","raw_affiliation_strings":["Valeo Visions Systems, Galway, Ireland"],"affiliations":[{"raw_affiliation_string":"Valeo Visions Systems, Galway, Ireland","institution_ids":["https://openalex.org/I4210126639"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":9.763,"has_fulltext":false,"cited_by_count":74,"citation_normalized_percentile":{"value":0.999949,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":99,"max":100},"biblio":{"volume":"23","issue":"9","first_page":"15940","last_page":"15950"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11605","display_name":"Visual Attention and Saliency Detection","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.5393654},{"id":"https://openalex.org/keywords/pedestrian-detection","display_name":"Pedestrian detection","score":0.5324529},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.51837283},{"id":"https://openalex.org/keywords/rgb-color-model","display_name":"RGB color model","score":0.4206726}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7458139},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7089603},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.6116115},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.5393654},{"id":"https://openalex.org/C2780156472","wikidata":"https://www.wikidata.org/wiki/Q2355550","display_name":"Pedestrian detection","level":3,"score":0.5324529},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.51837283},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.455354},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.44095892},{"id":"https://openalex.org/C82990744","wikidata":"https://www.wikidata.org/wiki/Q166194","display_name":"RGB color model","level":2,"score":0.4206726},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.39071852},{"id":"https://openalex.org/C2777113093","wikidata":"https://www.wikidata.org/wiki/Q221488","display_name":"Pedestrian","level":2,"score":0.38017675},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.13951907},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C22212356","wikidata":"https://www.wikidata.org/wiki/Q775325","display_name":"Transport engineering","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1109/tits.2022.3146575","pdf_url":null,"source":{"id":"https://openalex.org/S144771191","display_name":"IEEE Transactions on Intelligent Transportation Systems","issn_l":"1524-9050","issn":["1524-9050","1558-0016"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319808","host_organization_name":"Institute of Electrical and Electronics Engineers","host_organization_lineage":["https://openalex.org/P4310319808"],"host_organization_lineage_names":["Institute of Electrical and Electronics Engineers"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2105.12713","pdf_url":"http://arxiv.org/pdf/2105.12713","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2105.12713","pdf_url":"http://arxiv.org/pdf/2105.12713","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Sustainable cities and communities","id":"https://metadata.un.org/sdg/11","score":0.71}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":68,"referenced_works":["https://openalex.org/W1903127635","https://openalex.org/W1904301353","https://openalex.org/W1910108985","https://openalex.org/W1932198206","https://openalex.org/W2031454541","https://openalex.org/W2121955477","https://openalex.org/W2127812173","https://openalex.org/W2194775991","https://openalex.org/W2281954672","https://openalex.org/W2288122362","https://openalex.org/W2295594159","https://openalex.org/W2296073425","https://openalex.org/W2415234561","https://openalex.org/W2497039038","https://openalex.org/W2549139847","https://openalex.org/W2601564443","https://openalex.org/W2605982830","https://openalex.org/W2608096492","https://openalex.org/W2608295741","https://openalex.org/W2741620214","https://openalex.org/W2743197123","https://openalex.org/W2767014298","https://openalex.org/W2792925809","https://openalex.org/W2883279456","https://openalex.org/W2887564556","https://openalex.org/W2902314041","https://openalex.org/W2907101105","https://openalex.org/W2908984097","https://openalex.org/W2920991918","https://openalex.org/W2929607865","https://openalex.org/W2962793481","https://openalex.org/W2963188557","https://openalex.org/W2963238274","https://openalex.org/W2963399829","https://openalex.org/W2963404857","https://openalex.org/W2963579094","https://openalex.org/W2963858333","https://openalex.org/W2963998989","https://openalex.org/W2964027659","https://openalex.org/W2964059111","https://openalex.org/W2965912241","https://openalex.org/W2966197049","https://openalex.org/W2967090870","https://openalex.org/W2970929725","https://openalex.org/W2979372598","https://openalex.org/W2982007926","https://openalex.org/W2987131085","https://openalex.org/W2990479855","https://openalex.org/W3000171824","https://openalex.org/W3000280594","https://openalex.org/W3008115128","https://openalex.org/W3021927036","https://openalex.org/W3038835693","https://openalex.org/W3084389333","https://openalex.org/W3088382219","https://openalex.org/W3089807940","https://openalex.org/W3090198514","https://openalex.org/W3090239664","https://openalex.org/W3104978563","https://openalex.org/W3116967329","https://openalex.org/W3133874538","https://openalex.org/W3160202947","https://openalex.org/W3164066238","https://openalex.org/W3209119626","https://openalex.org/W3217118029","https://openalex.org/W4242120966","https://openalex.org/W639708223","https://openalex.org/W845365781"],"related_works":["https://openalex.org/W73785947","https://openalex.org/W4281689716","https://openalex.org/W4212983513","https://openalex.org/W3111016073","https://openalex.org/W2996655622","https://openalex.org/W2911294201","https://openalex.org/W2778608852","https://openalex.org/W2546942002","https://openalex.org/W2283162247","https://openalex.org/W1553005387"],"abstract_inverted_index":{"Pedestrian":[0],"Detection":[1],"is":[2,15,69,133,148],"the":[3,32,35,73,89,126,146,160,182,189,198,222,257],"most":[4],"critical":[5],"module":[6,105],"of":[7,37,71,79,93,108,111,114,125,131,145,156,162,185,197,219,232,256],"an":[8,50,230],"Autonomous":[9],"Driving":[10],"system.":[11],"Although":[12],"a":[13,38,101,112,119,177],"camera":[14,40],"commonly":[16],"used":[17,175],"for":[18,55,85,139],"this":[19,233],"purpose,":[20],"its":[21,237],"quality":[22,36],"degrades":[23],"severely":[24],"in":[25,44,166],"low-light":[26],"night":[27],"time":[28],"driving":[29],"scenarios.":[30],"On":[31],"other":[33],"hand,":[34],"thermal":[39,61],"image":[41],"remains":[42],"unaffected":[43],"similar":[45],"conditions.":[46],"This":[47],"paper":[48],"proposes":[49],"end-to-end":[51],"multimodal":[52,74,102,205],"fusion":[53,121,129],"model":[54],"pedestrian":[56,187,206],"detection":[57,207],"using":[58],"RGB":[59],"and":[60,118,154,188,213],"images.":[62],"Its":[63],"novel":[64],"spatio-contextual":[65],"deep":[66],"network":[67],"architecture":[68],"capable":[70],"exploiting":[72],"input":[75],"efficiently.":[76],"It":[77],"consists":[78],"two":[80,90,95,137],"distinct":[81],"deformable":[82],"ResNeXt-50":[83],"encoders":[84],"feature":[86,103,120,128,172],"extraction":[87,155],"from":[88],"modalities.":[91],"Fusion":[92],"these":[94,171],"encoded":[96],"features":[97,147],"takes":[98],"place":[99],"inside":[100],"embedding":[104],"(MuFEm)":[106],"consisting":[107],"several":[109],"groups":[110],"pair":[113],"Graph":[115],"Attention":[116],"Network":[117],"unit.":[122],"The":[123,215],"output":[124],"last":[127],"unit":[130],"MuFEm":[132],"subsequently":[134],"passed":[135],"to":[136,180],"CRFs":[138],"their":[140],"spatial":[141],"refinement.":[142],"Further":[143],"enhancement":[144],"achieved":[149],"by":[150,176],"applying":[151],"channel-wise":[152],"attention":[153],"contextual":[157],"information":[158],"with":[159,236],"help":[161],"four":[163,167],"RNNs":[164],"traversing":[165],"different":[168],"directions.":[169],"Finally,":[170],"maps":[173],"are":[174],"single-stage":[178],"decoder":[179],"generate":[181],"bounding":[183],"box":[184],"each":[186,218],"score":[190],"map.":[191],"We":[192],"have":[193],"performed":[194],"extensive":[195],"experiments":[196],"proposed":[199],"framework":[200],"on":[201,217],"three":[202],"publicly":[203],"available":[204],"benchmark":[208],"datasets,":[209],"namely":[210],"KAIST,":[211],"CVC-14,":[212],"UTokyo.":[214],"results":[216,239],"them":[220],"improved":[221],"respective":[223],"state-of-the-art":[224],"performance.":[225],"A":[226],"short":[227],"video":[228],"giving":[229],"overview":[231],"work":[234],"along":[235],"qualitative":[238],"can":[240],"be":[241,252],"seen":[242],"at":[243],"https://youtu.be/FDJdSifuuCs":[246],".":[247],"Our":[248],"source":[249],"code":[250],"will":[251],"released":[253],"upon":[254],"publication":[255],"paper.":[258]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3164576087","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":20},{"year":2023,"cited_by_count":29},{"year":2022,"cited_by_count":23}],"updated_date":"2025-04-09T20:21:55.693187","created_date":"2021-06-07"}